

# THE REPUBLIC OF UGANDA

# KABALE DISTRICT LOCAL GOVERNMENT

In Conjunction with

NILE BASIN INITIATIVE NILE EQUATORIAL LAKES SUBSIDIARY ACTION PROGRAMME (NELSAP) KAGERA TRANSBOUNDARY INTEGRATED WATER RESOURCES MANAGEMENT PROJECT

# FINAL REPORT FOR THE DESIGN AND DOCUMENTATION OF KATUNA GRAVITY FLOW SCHEME

Submitted by:



BIOSCA CONSULTANTS LTD. Plot No 110, Mbarara Road P. O. Box 197, Kabale - UGANDA Tel: +256 486 26047 Website: www.biosca-ug.net Email: office@biosca-ug.net

November 2007

# **EXECUTIVE SUMMARY**

## BACKGROUND

This is a design report for the Katuna Water supply and Sanitation Scheme. It is part of the Kabale District Local Government Water Supply and Sanitation Development Programme in conjunction with Nile Basin Initiative's Nile Equatorial Lakes Subsidiary Action Programme (NELSAP) / Kagera Transboundary Integrated Water Resources Management Project (KTIWRMP). BIOSCA Consultants Ltd. was contracted to undertake the design and documentation of the Katuna Gravity Flow Scheme.

A feasibility study of the Katuna water supply scheme was done and this included topographic and baseline surveys of the project area with the help of the Kabale District Water Office Officials.

## **Project area**

The Project area is situated in Katuna. The communities which were focused on during the Baseline Survey were Kabaliisa/Buranga, Rwakakobe, Nyamengo/Kanyanjokye, Mayengo, Burambira, Hakabungo and Ryaruhinda. All these communities are in Kamuganguzi subcounty, Ndorwa County, Kabale District. The larger parts of these communities make up Katuna, a town found at the South-Western border of Uganda with Rwanda. The project area is about 22 Km from Kabale town. The water supply system is intended to serve a current population of 3,791 in 782 households and a combined institutional population of 4,556.

## Sanitation

The principal facility for excreta disposal in the town are pit latrines, but only a few can be rated as being structurally, functionally and hygienically adequate. The majorities of pit latrines are constructed out of mud (out of these 90% have a san plat and 3.2% don't have) Ventilated Improved Pit (VIP) latrines take 1.2% and eco san takes 2% of the total .pit latrine coverage.

In addition, there are few proper sullage water disposal facilities such as soak pits. The few soak pits available are silted and floated, with no proper final disposal system.

The absence of properly-organised sanitation facilities and systems, combined with the growing population in the town, is now becoming a considerably serious problem.

### **Environmental Impact Assessment**

The positive environmental and social impacts of the proposed water supply and sanitation schemes should be quite obvious. The benefits to be derived from the provision of good quality and safe water and improved sanitation for domestic use in order to improve the health situation and subsequently the economic productivity of the beneficiaries, cannot be overemphasized.

The potential negative environmental and social impacts would arise both during the construction phase and the operational phase of the proposed new schemes. Many of these impacts would be rendered insignificant, if reasonable low-cost mitigation measures are implemented as recommended in this report.

### **Project Justification**

Two Gravity Flow Systems were constructed for some parts of the target area this consultancy has considered. One Kabaliisa Gravity Flow System was implemented in 1985 by UNICEF under the Water Environment and Sanitation programme (WES).

The second Gravity Flow Scheme was implemented by the Church of Uganda, Diocese of Kigezi Water and Sanitation programe (KDWSP) in 1992 and the target area was Katuna town.

The two systems shared similar problems as highlighted below and led to their collapse;

- Lack of a properly instituted management leading to poor maintenance of the system.
- Some of the sections were constructed out of Galvanised iron (GI) which rusted leading to intermittent flows through the system.
- In sections the pipes were not laid in trenches and it was easily vandalized.
- There were reported cases of vandalism, like stealing tap heads leading to open flows at the taps. With the constant flows, unsightly scenes were common on these water points thus poor hygiene.

The objectives of the project based on the above background can therefore be laid out as follows;

- To assess the efficiency of the existing water supply systems.
- To explore the feasibility of extending water to currently the un served areas.
- To come up with a water supply and sanitation system that puts into consideration community participation, appropriate technology applications, ensuring sustainability by establishing management structures in which the users take lead.

The provision of safe drinking water and good sanitation services is essential for the health and social economic development of the community. "*Water is life*" and "*sanitation is health*".

## Project scope

From the study carried out, the two projects are feasible and would involve implementation of the following;

### Kabaliisa

- 1) Source redevelopment (2 in No.)
- 2) Supply and installation of pipes (2.6km)
- 3) Construction of 11 new tap stands and rehabilitation of 19 old tap stands.
- 4) Soft ware component (sensitization and mobilization of community)

#### Katuna town

- 1) Source development (2 in No.) including planting trees and chain link fencing.
- 2) Supply and installation of pipes (13.9km)
- 3) Construction of 1.5m3 reinforced concrete sedimentation tank (2 in no.)
- 4) Construction of 10m3 brick masonry break pressure tank
- 5) Construction of 90m3 brick masonry reservoir tank
- 6) Construction of public kiosks (6 in no.)
- 7) Construction of public tap stands 40 in No.
- 8) Soft ware component (mobilization and sensitization of community)
- 9) Road to Nyakatare source

The road to the source has been considered resulting from a condition set by the owner of the land at the source if he's to give it out for source development.

### **Project cost**

From the above breakdown, the two water supply and sanitation systems are estimated at a cost of **Ug Shs. 497,319,613**/= (Four hundred ninety seven million three hundred nineteen thousand six hundred thirteen only.

Taking Katuna GFS alone, the capital investment per person is Ug Shs.27, 800/= an equivalent of US\$17 which is much below the maximum recommended value of US\$75

# TABLE OF CONTENTS:

| EXECU | TIVE SUMMARY                                                                                                                                                                                                 | 2                                        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 1     | NTRODUCTION                                                                                                                                                                                                  | 7                                        |
|       | 1.1 BACKGROUND                                                                                                                                                                                               | 7                                        |
| 2     | THE PROJECT AREA                                                                                                                                                                                             | 8                                        |
|       | 2.1 GENERAL   2.2 PHYSICAL INFORMATION   2.2.1 Climate   2.2.2 Hydrogeology   2.2.3 Topography   2.3 SOCIO-ECONOMIC ASPECTS   2.3.1 Demographic Information   2.3.2 Institutions   2.3.3 Economic Activities | 8<br>8<br>8<br>8<br>10<br>10<br>11<br>12 |
| 3     | THE EXISTING SITUATION                                                                                                                                                                                       | 15                                       |
|       | 3.1 EXISTING WATER SUPPLY SITUATION                                                                                                                                                                          | 15                                       |
|       | 3.2 EXISTING SANITATION SITUATION                                                                                                                                                                            | 18                                       |
| 4     | WATER RESOURCES                                                                                                                                                                                              | 23                                       |
|       | 4.1 GROUND WATER                                                                                                                                                                                             | 23                                       |
| F     |                                                                                                                                                                                                              | 20                                       |
| 5     |                                                                                                                                                                                                              | 20                                       |
|       | 5.1 POPULATION PROJECTIONS.<br>5.2 Basis of Design                                                                                                                                                           | 26<br>26                                 |
|       | 5.2.1 Design Criteria                                                                                                                                                                                        | 26                                       |
|       | 5.3 SERVICE LEVELS                                                                                                                                                                                           | 29<br>29                                 |
| 6     | DESIGN FOR THE GRAVITY FLOW SYSTEM                                                                                                                                                                           | 31                                       |
|       | 6.1 GENERAL                                                                                                                                                                                                  | 31                                       |
|       | 6.2 SOURCE CHARACTERISTICS<br>6.3 ABSTRACTION, TRANSMISSION AND DISTRIBUTION                                                                                                                                 | 31<br>31                                 |
|       | 6.3.1 Abstraction and Transmission                                                                                                                                                                           | 31                                       |
|       | 6.3.2 Reservoir Tank<br>6.3.3 Distribution Network                                                                                                                                                           | 32<br>32                                 |
|       | 6.3.4 Pipeline Summary                                                                                                                                                                                       | 33                                       |
| 7     | SANITATION PROPOSAL                                                                                                                                                                                          | 35                                       |
| 8     | ENVIRONMENTAL IMPACT ASSESSEMENT (EIA)                                                                                                                                                                       | 37                                       |
|       | 8.2 KEY IMPACTS AND MITIGATION MEASURES                                                                                                                                                                      | 39                                       |
| •     | 8.3 POSITIVE IMPACTS OF THE PROJECT                                                                                                                                                                          | 44                                       |
| 9     |                                                                                                                                                                                                              | 45                                       |
| 10    | RECOMEDATIONS AND CONCLUSIONS                                                                                                                                                                                | 48                                       |
|       | 10.1 CONCLUSION                                                                                                                                                                                              | 48<br>48                                 |
| 11    | ANNEXES:                                                                                                                                                                                                     | 49                                       |
|       | WATER DEMAND PROJECTIONS                                                                                                                                                                                     | 50                                       |
|       | WATER QUALITY TEST RESULTS                                                                                                                                                                                   | 52<br>53                                 |
|       | Hydraulic design:                                                                                                                                                                                            | 60                                       |
|       | O&M TRAINING GUIDE                                                                                                                                                                                           | 77<br>84                                 |
|       | Drawings (schematic layout, profiles, hydraulic structures).                                                                                                                                                 | 85                                       |

### LIST OF FIGURES

| Figure 1  | Steep slopes with a lot human activity in one the source areas | 9    |
|-----------|----------------------------------------------------------------|------|
| Figure 2  | A view of Katuna Lower from Katuna Upper (Mayengo hill)        | . 12 |
| Figure 3  | A functional Community tap stand for Katuna Upper (Burambira)  | . 15 |
| Figure 4  | A household kitchen that doubles as a brewery                  | . 18 |
| Figure 5  | Drainage channel in Katuna                                     | 19   |
| Figure 6  | Typical household pit latrine                                  | 21   |
| Figure 7  | A school's toilet facility                                     | 21   |
| Figure 8  | Rwembogo Spring (total yield is 0.9 l/s)                       | 23   |
| Figure 9  | Community springs in Ryaruhinda Parish                         | 24   |
| Figure 10 | Nyakatare Source (yield is 0.6 L/s)                            | 24   |

# LIST OF TABLES

| Table 1  | Population Figures10                                         |
|----------|--------------------------------------------------------------|
| Table 2  | Institution population11                                     |
| Table 3  | Source of income                                             |
| Table 4  | House hold incomes                                           |
| Table 5  | Water sources                                                |
| Table 6  | General Sanitation Situation                                 |
| Table 7  | Pit Latrine coverage                                         |
| Table 8  | Type of Excreta Disposal facilities                          |
| Table 9  | Population projection                                        |
| Table 10 | Service levels                                               |
| Table 11 | Transmission pipeline details                                |
| Table 12 | Water demand patterns                                        |
| Table 13 | Distribution Network details                                 |
| Table 14 | Pipe line summary                                            |
| Table 15 | Water point environmental status and restoration plan matrix |
| Table 16 | Impact-Effect Mitigation Matrix                              |
| Table 17 | Summary of Environmental monitoring plan                     |

# **1 NTRODUCTION**

## 1.1 BACKGROUND

Kabale District local government, in conjunction with Nile Basin Initiative's Nile Equatorial Lakes Subsidiary Action Programme (NELSAP) / Kagera Trans-boundary Integrated Water Resources Management Project (KTIWRMP), has received funds and intends to use part of the funds for the study and designs of a Gravity Flow Scheme for Katuna, a town found at the border with Rwanda. BIOSCA Consultants Ltd was contracted as Consultants to carry out the studies and prepare designs for the scheme which will cater for the Katuna town and its surrounding communities.

The assignment was carried out in three phases:

- 1. Preliminary studies which involved water resources assessment and existing situation analysis. This phase culminated into the recommendations and proposed water sources.
- 2. Baseline and topographic surveys, by which the suitability of the recommended source to serve the target area (in respect to the population demographics, socio economic aspects, the altitude and average future demand) was determined and contained in the report.
- 3. Detailed design phase, for the water supply system.

# 2 THE PROJECT AREA

## 2.1 GENERAL

The project area encompasses the entire Katuna border town which includes two cells that is, Mayengo and Burambira; Katuna is a town boarder located in Kamuganguzi Sub County, Ndorwa County, Kabale district. Katuna is located about 20 Km from Kabale Town. The project boundaries are based on the parish sizes, which are the LCII.

The water supply and sanitation system shall target various communities in the target area and the institutions therein, which are water stressed. Consideration shall however be given to areas of dense populations along the pipeline and institutions within a reasonable distance not exceeding 1km, but with no alternative sources of water.

### 2.2 PHYSICAL INFORMATION

### 2.2.1 Climate

Kabale district experiences an equatorial type of climate characterized by two rainy seasons with a mean annual rainfall ranging between 1200mm and 1500mm. Minimum rainfall is experienced in the months of May to August.

Temperatures range between 11<sup>o</sup>c to 28<sup>o</sup>c with minor fluctuations.

### 2.2.2 Hydrogeology

Katuna is mainly underlain by the granite rocks composed mainly of undifferentiated gneisses, largely layered or banded. High ridges and moderate V-shaped valleys characterize the terrain. Ground water potential is good to moderate in the valleys and at the foot of the ridges.

### 2.2.3 Topography

The area is generally characterized with steep hills. Katuna Town is located on the foothills of Mayengo hills. Below Katuna town lays a wetland which is partly used for low scale cattle farming. The photographs below show some of the Steep and V-shaped slopes.



Figure 1 Steep slopes with a lot human activity in one the source areas

### 2.3 SOCIO-ECONOMIC ASPECTS

### 2.3.1 Demographic Information

The demographic information of the area was obtained with the help of the consultant's social workers and the local leaders of the area through a house-to-house exercise by counting the number of house members within the proposed supply area.

The tables below give updated household population in the supply area and the number of households.

|                    | 3         | -         |                           |         |           |           |            |        |
|--------------------|-----------|-----------|---------------------------|---------|-----------|-----------|------------|--------|
|                    | Kabaliisa | Rwakakobe | Nyamengo /<br>Kanyanjokye | Mayengo | Burambira | Hakabungo | Ryaruhinda | TOTALS |
| Total Households   | 71        | 132       | 60                        | 133     | 202       | 71        | 113        | 782    |
| Population         | 366       | 652       | 297                       | 574     | 886       | 364       | 652        | 3791   |
| Total Institutions | -         | 1         | -                         | 10      | 7         | 2         | -          | 17     |
| Population         | -         | 300       | -                         | 2257    | 1127      | 872       | -          | 4556   |

Table 1Population Figures

# NOTE: Total population in the Households is 3,791 people Total population in the Institutions is 4,556 people

From table, above, it can be seen that the Total Target Population of the Katuna Water Supply Scheme is **8,347** people. This is the total of all the persons found in the households and all the institutions in the area.

This figure is for people who are staying in the households and institutions of the communities and does not include people who are visiting (for example business people). It was hard to get the number of persons who were operating at the border either as money changers or as sellers or buyers of commodities (mainly on market days – Wednesday and Saturday), or even people going through the border. This, as explained by the concerned leaders was hard to determine because the numbers varied according to various factors like weather, price fluctuations, political activities and educational and health activities.

The table below likewise gives the institutional population in the supply area:

| Institution Name                            | Туре            | Population | Location  |
|---------------------------------------------|-----------------|------------|-----------|
| Mayengo Primary School (Day)                | Educational     | 378        | Mayengo   |
| Katuna Primary School (Day)                 | Educational     | 409        | Burambira |
| Janani Luwum Memorial Secondary School,     | Educational     | 581        | Mayengo   |
| Kamuganguzi (Kamuganguzi Sec. School)       |                 |            |           |
| Mukarangye Primary School                   | Educational     | 362        | Hakabungo |
| Little Angels Nursery School (Day)          | Educational     | 39         | Mayengo   |
| International Nursery School (Day Nursery & | Educational     | 110        | Burambira |
| P.1)                                        |                 |            |           |
| St. Emmanuel's Mayengo Church of Uganda     | Religious       | 10         | Mayengo   |
| Katuna Roman Catholic Church                | Religious       | 5          | Burambira |
| Mukarangye Roman Catholic Church            | Religious       | 600        | Burambira |
| Rwakakobe Church of Uganda                  | Religious       | 300        | Rwakakobe |
| Kamuganguzi Church of Uganda                | Religious       | 600        | Mayengo   |
| Mukarangye Church of Uganda                 | Religious       | 510        | Hakabungo |
| Katuna Mosque                               | Religious       | 3          | Burambira |
| Katuna Pentecostal Church                   | Religious       | -          | Mayengo   |
| Katuna Customs and Immigration              | Economic/Border | 107        | Mayengo   |
| Katuna Market                               | Economic        | -          | Burambira |
| Katuna Inn                                  | Economic        | -          | Burambira |
| New Terrace Hotel                           | Economic        | -          | Mayengo   |
| Kamuganguzi Health Centre                   | Health          | -          | Mayengo   |

Table 2Institution population

From table above, it can be seen that the majority of the institutions in the target area are Educational.

However, during the survey, it was observed that Katuna Market has got thousands of people flocking it comprising of residents, non-residents and Rwandan nationals

## 2.3.2 Institutions

There are 19 institutions considered to be part of the project supply area in Katuna towns. These include **one** health centre, **seven** schools, **six** churches and **one** mosque, and customs and immigrations' office, **two** hotels and a weekly market. These institutions are in the proposed supply area and therefore shall be included in the designs.

## 2.3.3 Economic Activities

The major economic activities in Katuna town is small scale business enterprises, currency exchange centers and farming on fragmented pieces of land within the fringe areas of the town

Employment by government or private institutions also takes a very small percentage of the economic activities.



Figure 2 A view of Katuna Lower from Katuna Upper (Mayengo hill)

### 2.3.4 Household Incomes

Being an International border town, Katuna has got a lot of economic activity going on. The majority of the population has tried to exploit the nature of the town's setting in order to generate incomes for themselves and their households. The table below shows the major sources of income for households.

| Activity                | Shop | Kiosk | Workshop | Agriculture | Livestock | Restaurant | Drug Shop | Money<br>changing | Bar  | Salary | Casual | Lodge | Catechist | None | TOTALS |
|-------------------------|------|-------|----------|-------------|-----------|------------|-----------|-------------------|------|--------|--------|-------|-----------|------|--------|
| Kabaliisa               | 8    | -     | -        | 51          | 5         | -          | -         | -                 | 1    | 3      | 1      | -     | 2         | -    | 71     |
| Rwakakobe               | -    | -     | -        | 131         | 1         | -          | -         | -                 | -    | -      | -      | -     | -         | -    | 132    |
| Nyamengo/<br>Kanyanjoka | 3    | -     | -        | 57          | -         | -          | -         | -                 | -    | -      | -      | -     | -         | -    | 60     |
| Hakabungo               | 4    | 7     | -        | 56          | 1         | -          | -         | -                 | -    | 3      | -      | -     | -         | -    | 71     |
| Ryaruhinda              | 1    | 1     | 1        | 105         | 5         | -          | -         | -                 | -    | -      | -      | -     | -         | -    | 113    |
| Mayengo                 | 30   | 8     | 5        | 37          | 0         | 5          | 3         | 4                 | 3    | 32     | 0      | 4     |           | 2    | 133    |
| Burambira               | 32   | 29    | 2        | 100         | 2         | 4          | 2         | 2                 | 14   | 11     | 1      | 0     | -         | 3    | 202    |
| Total                   | 78   | 45    | 8        | 537         | 14        | 9          | 5         | 6                 | 18   | 49     | 2      | 4     | 2         | 5    | 782    |
| Percentage              | 9.97 | 5.75  | 1.02     | 68.67       | 1.79      | 1.15       | 0.64      | 0.77              | 2.30 | 6.27   | 0.26   | 0.51  | 0.26      | 0.64 | 100    |

Table 3Source of income

From table, above, it can be seen that the average major Source of income is Agriculture. This has a percentage of 68.67%. It can also be seen that Agriculture is by far the major source of income in all the communities. Household heads were asked to approximate their average monthly incomes, most especially the monies which were spent on their households. These figures were used to compute the sums and averages below;

| Table 4    | House hold incomes |                    |           |
|------------|--------------------|--------------------|-----------|
| Area       | Total Households   | Total Income (Shs) | Average   |
| Kabaliisa  | 71                 | 2,108,000/=        | 29,690/=  |
| Rwakakobe  | 132                | 700,000/=          | 5,303/=   |
| Nyamengo/  | 60                 | 9 710 000/=        | 161833/=  |
| Kanyanjoka |                    | 0,7 10,0007-       | 101000, - |
| Hakabungo  | 202                | 9,281,000/=        | 45,945/=  |
| Ryaruhinda | 133                | 11,998,000/=       | 90,211/=  |
| Mayengo    | 71                 | 2,353,000/=        | 33,141/=  |
| Burambira  | 113                | 2,877,000/=        | 25,460/=  |

# **3 THE EXISTING SITUATION**

## 3.1 EXISTING WATER SUPPLY SITUATION

### 3.1.1 Water

Due to the presence of some piped water schemes, and different water sources, the target area is divided into two main groups of communities

Community A: Which has got piped water systems Community B: Which doesn't have piped water systems

### 3.1.2 Community A

Community A is mainly Kabaliisa and Katuna Upper. During the reconnaissance and Baseline survey, it was observed that Katuna Upper (partly Burambira) has got a piped water system that may be sufficient for the population that it supplies. However, Kabaliisa has got a piped water system that has broken down and needs to be rehabilitated, or better still, reconstructed.



Figure 3 A functional Community tap stand for Katuna Upper (Burambira)

### 3.1.3 Community B

Community B comprises of mainly the remaining communities which rely mainly on water from Protected Springs or streams. Due to the lack of adequate water supply facilities, even the few protected springs were constructed for these communities have been overwhelmed by the demand and have thus been depreciated to levels where the water quality and supply is not established but is apparently very low.

Community members do not pay a user fee for any of the water collected from these tap stands. They only try to mobilize resources when a tap has broken down or a pipe has been cut. It was learnt that even when something like this does occur, the community members are still reluctant to release money for the necessary repairs.

This shows the number of households using a particular water source and for water quality results; (*see annex*).

| Table 5      | Water sources              |                        |                   |        |      |  |
|--------------|----------------------------|------------------------|-------------------|--------|------|--|
| Water source | Community tap stand        | House hold tap stand   | Protected         | Stream | None |  |
|              |                            |                        | springs           |        |      |  |
|              | 58 (Rely on three          | 7 (these are private   |                   |        |      |  |
| Kabaliisa    | functioning tap stands out | household connections) | NIL               | 6      | NIL  |  |
|              | of the initial 18 taps)    |                        |                   |        |      |  |
|              |                            | 1 (Private connection) | 131               |        |      |  |
| Rwakakobe    | NIL                        |                        | (Rwakakobe P.     | NIL    | NIL  |  |
|              |                            |                        | Spring)           |        |      |  |
|              |                            | 4(private connections) | 56                |        |      |  |
| Nyamengo/    | NIII                       |                        | (Community        | NIII   | NUL  |  |
| Kanyanjoka   | INIL                       |                        | relies on 1 P.    |        | INIL |  |
|              |                            |                        | Spring)           |        |      |  |
|              | 28 (25 use community tap   | 173 (use one Protected | NIL               |        |      |  |
| Burambira    | in Katuna Upper, 3 use     | spring in Burambira)   |                   | NIL    | 1    |  |
|              | tap in Nyiramurinzi)       |                        |                   |        |      |  |
| Mayengo      | 55 (community tap stand)   | NIII                   | 77 (use           |        | 1    |  |
| Mayenge      |                            |                        | protected spring) |        | •    |  |
|              |                            |                        | 71                |        |      |  |
| Hakabungo    | NIL                        | NIL                    | (Hakabungo P.     | NIL    | NIL  |  |
|              |                            |                        | Spring)           |        |      |  |
| Byaruhinda   | NIII                       | NIII                   | 96 (Ryaruhinda )  |        | NII  |  |
| riyarunnua   |                            |                        | 17 (Hakabungo)    |        |      |  |
| Percentage   | 18.03                      | 23.57                  | 57.29             | 0.77   | 0.26 |  |

From table above, it can be noticed that the majority of the Households in Katuna rely on water collected from the protected springs. These make up 57.29% of all households. The approximate average distance from a household to a water source is 325metres.

## 3.2 EXISTING SANITATION SITUATION

#### 3.2.1 General community sanitation

According to the Baseline Survey the sanitation of the area leaves a lot to be desired. The general cleanliness levels of the area were low and there were many basic sanitation facilities lacking in many of the households. The following table shows the general summary of the sanitation situation of the area.

| Sanitation Facility                | Present (Ho | Present (Households) |        |         | Not Applicable |      |
|------------------------------------|-------------|----------------------|--------|---------|----------------|------|
|                                    |             |                      | (House | eholds) |                |      |
|                                    | No          | %                    | No.    | %       | No.            | %    |
| Excreta Disposal (Toilet, Latrine) | 725         | 92.71                | 57     | 7.29    |                |      |
| Kitchen                            | 530         | 67.77                | 252    | 32.23   | -              | -    |
| Drying Rack                        | 294         | 37.6                 | 488    | 62.4    | -              | -    |
| Drying Rack                        | 294         | 37.6                 | 488    | 62.4    | -              | -    |
| Compost Pit                        | 147         | 18.8                 | 635    | 81.2    | -              | -    |
| Animal House                       | 187         | 23.9                 | 244    | 31.2    | 351            | 44.9 |
| Clean Water Collection Containers  | 656         | 83.9                 | 126    | 16.1    | -              | -    |
| Drinking Water Storage facilities  | 525         | 67.1                 | 257    | 32.9    | -              | -    |

Table 6General Sanitation Situation



Figure 4 A household kitchen that doubles as a brewery

The general community sanitation standards of the target area greatly vary. In areas which are hilly and on higher altitudes, the sanitation is relatively okay, mainly because of the absence of stagnant water and also because these areas are predominantly households, and the community members try to keep their households clean and swept.

However, in the busier, more flat areas (especially the Katuna market area), the sanitation is very poor, with rubbish, human and animal excreta strewn in many places. Household waste, most especially polythene waste, is thrown everywhere, including the drainage facilities and on the roads. The poor community cleanliness may be attributed to the fact that there is a bi-weekly market that has a lot of waste which does not have an appropriate disposal place.

A channel that runs behind Katuna Lower is very filthy covered with a lot of waste, this channel, believed to be an extension of a river that runs from Kabale to Rwanda poses a great health risk to the people of the community, because it is used a dumping ground for the community.



Figure 5 Drainage channel in Katuna

## 3.2.2 Pit latrine/toilet coverage

Several households and Institutions in Katuna lack Human Excreta Disposal facilities. A total of 57 Households (7.29%) do not have pit latrines. A community institution, Katuna Market, which is flocked by thousands of people, does not have a pit latrine or any other faecal disposal facility.

The table below shows the pit latrine situation in the target area for Katuna Gravity Flow Scheme

|            | Present | Absent | Dirty | Clean |
|------------|---------|--------|-------|-------|
| Kabaliisa  | 61      | 10     | 18    | 43    |
| Rwakakobe  | 118     | 13     | 29    | 92    |
| Nyamengo/  |         |        |       |       |
| Kanyanjoka | 59      | 1      | 6     | 53    |
| Hakabungo  | 189     | 13     | 88    | 101   |
| Ryaruhinda | 118     | 15     | 49    | 84    |
| Mayengo    | 71      | -      | 29    | 42    |
| Burambira  | 110     | 3      | 43    | 67    |

Table 7Pit Latrine coverage

|                         | Slab/<br>Permanent | V.I.P. | Ecosan | Traditional with<br>San Plat | Traditional<br>without San<br>Plat | Flush | Total |
|-------------------------|--------------------|--------|--------|------------------------------|------------------------------------|-------|-------|
| Kabaliisa               | 3                  | 2      | 1      | -                            | 55                                 | -     | 61    |
| Rwakakobe               | -                  | -      | 1      | -                            | 118                                | -     | 119   |
| Nyamengo/<br>Kanyanjoka | -                  | 4      | -      | 2                            | 53                                 | -     | 59    |
| Hakabungo               | 6                  | 1      | 12     | 2                            | 167                                | 1     | 189   |
| Ryaruhinda              | 3                  | 1      | 1      | 10                           | 98                                 | 5     | 118   |
| Mayengo                 | -                  | 1      | -      | 4                            | 66                                 | -     | 71    |
| Burambira               | -                  | -      | -      | 5                            | 104                                | 1     | 110   |
| Total                   | 12                 | 9      | 15     | 23                           | 661                                | 7     | 727   |

Table 8Type of Excreta Disposal facilities

Form table above, it can be seen that the most common type of Human excreta disposal facility in all communities the traditional pit latrine without Sanitation platform (san plat). In a situation where sanitation standards are low this type of pit latrine can be quite hazardous.



Figure 6 Typical household pit latrine



Figure 7 A school's toilet facility

## 3.2.3 Faecal Matter Disposal

The Sanitation situation in Katuna is poor. The common Faecal Disposal system is Ordinary Pit latrines.

There is one public Ecological Sanitation Toilet in Katuna town which is poorly managed and used improperly. Ecological Sanitation Toilets would otherwise be the best in the area because of agricultural and farming practices and of course Katuna lower, the water table is low because of the neighboring wetland.

# 3.2.4 Refuse Collection and Disposal

No proper system for solid waste disposal is in place. 84% of households have no compost pits as a means of solid waste disposal.

In some households however, solid wastes are collected and damped in the farmyards or nearby bushes.

Refuse disposal is a big problem as non-putrifiable components do pollute the environment. Many petroleum byproducts like used plastic containers and polyethylene papers, which degrade the soil fertility, are damped in gardens or in the nearby bushes. The town center is littered with a lot of polyethylene papers.

## 3.2.5 Waste Water

Grey water [silage] disposal so far is not a serious problem because of the nature of the terrain, grey water is drained down stream to the existing swamps and stream. Water is only used for domestic purposes. Otherwise, much of it is disposed of in water channels and in the gardens/compounds. Now that the swamps have been cleared into farms, as the town expands waste water generation will definitely increase and therefore polluting the streams below the town and thus posing danger to aquatic life.

# 3.2.6 Storm Water Drainage

There is no defined system of drainage though the nature of the topography also favors the area from flooding since storm water easily flows down hills. Drainage from the individual households is the responsibility of the occupants. The lower Katuna town floods during the rainy seasons. The floods take long to clear and provide a vulnerable condition for mosquito multiplication.

# **4 WATER RESOURCES**

### 4.1 GROUND WATER

There are five springs that were identified in Kamuganguzi Sub-county;

- 1. Two (2) springs in Kabalisa and records available indicate that the yield is 0.4 l/s and can will needs redevelopement.
- 2. One (1) spring in Rwembogo with a yield of 0.9 l/s. and can be gravitated to the reservoir tank to supply Katuna town
- 3. One (1) spring in Nyakatare with a yield of 0.6 l/s and can be gravitated to the reservoir tank to supply Katuna town.
- 4. One (1) spring in Kiniongo with a yield of 0.4l/s and is lower than Rwembogo and Nyakatare sources and would thus require pumping to the proposed Reservoir tank position. For this project, it was not considered as the water source point for the system for the proposed GFS.



Figure 8 Rwembogo Spring (total yield is 0.9 l/s)



Figure 9 Community springs in Ryaruhinda Parish



Figure 10 Nyakatare Source (yield is 0.6 L/s)

Rwembogo and Nyakatare sources were chosen for this system, the choice was arrived at basing on the following;

- The location of the sources in relation to the location of the reservoir; it could be gravitated, thus minimum costs would be incurred during transmission.
- The yield of the two sources would comfortably cover the design demand projections.
- From the laboratory test carried out, the water was free from pathogenic (disease causing) organisms.
- Fairly clear (low turbidity and little colour).
- Fresh (not saline, or salty).
- Free from compounds that cause offensive taste and odour.
- Incapable of causing corrosion of the water supply system.

### Other existing Water resources

### River Kiruruma;

There is a stream, Kiruruma, dividing the Uganda and Rwanda whose water quality is not good. It's turbid because of the human activity along it. However the people use this water for domestic use.

Below Katuna town is a farm land which was originally a swamp, that floods during the rainy season.

# 4.2 RAIN WATER

Rain Water harvesting is on a very low scale in the project area. Just a few households use rain water as the main source of water.

It is however very important for the communities especially those that are within the supply area but do not have access to piped water system. Rainwater harvesting can be practiced at household level. Communal Rain water harvesting systems are not cost effective. The investment cost is high and considering dry spells seasons for say three months requires a big investment. People could be sensitized to tap water from their roofs using gutters fixed to the roof eaves.

# **5 DESIGN CONSIDERATIONS**

## 5.1 Population projections.

The current population was established after a head count exercise carried out by the Consultants' team with assistance from the community members in households, local leaders and opinion leaders of the area. This was during the Baseline survey.

The Table below shows the current population and the projected population through design horizon of 20 years and considering a growth rate of 3% per annum as per the 2002 population National census.

| Table 9 Po | pulation projection     |
|------------|-------------------------|
| Year       | Population to be served |
| 2007       | 8,347                   |
| 2027       | 15,075                  |

The population in the table includes all the institutions. The details are in the *Annex water demand projections.* 

The design horizon of 20years was considered appropriate for this system on weighing the following factors;

- Project size/cost
- Running costs
- Population growth
- Financial constraints
- Durability (service life) of the different components of the system
- Future extensions to be made

## 5.2 Basis of Design

## 5.2.1 Design Criteria

As recommended in the Water Supply Design Manual 2000 for the Ministry of Water, Lands and Environment, service levels have been derived from the user's income levels, and the ability and willingness to pay as determined from the baseline surveys. The service levels vary from yard tap to serve a group of people in a particular area. The design criteria comprises unit demand, design horizons, operating conditions, design life and replacement horizon, and design demand.

### I. Unit Demand

The unit demand is the design per capita consumption for a given service level. The following are the unit demand rates together with the population and the technical figures, which collectively were considered for the design.

#### UNIT WATER DEMAND

| Population 25 l/cap/day incl. was               | te water = 15% |
|-------------------------------------------------|----------------|
| P/school 6 l/cap/day incl. staff                | f              |
| S/school 6 l/cap/day incl. staff                | f              |
| S/school (boarding) 25 l/cap/day incl. staff    | f              |
| Markets 1 standpipe/500 visitors                |                |
| Densely populated centres double standpipes     |                |
| Dispensaries 20 l/day                           |                |
| Health units/Dispensaries 100 l/day for ipd     |                |
| 20 l/day for opd                                |                |
| Hospitals 200 l/bed/day                         |                |
| 23 l/cap/day staff and                          | family         |
| Hotels 100 l/bed/day                            |                |
| Government institutions 500-3000 l/day dependin | ng on size     |
| Churches 500 l/day                              |                |
| Other institutions 500 l/day                    |                |
| Private Connections 65 l/cap/day (yard tap)     |                |
| In house connections 130 l/cap/day              |                |

#### POPULATION FIGURE

| Growth Rate   | 3 % pa    |              |
|---------------|-----------|--------------|
| Design Period | 20 years  | Factor: 1.81 |
| Household     | 6 members |              |

#### TECHNICAL

| Location of tap stands with regard to the popu | Ilation                                                        |                                                                |
|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Max. Walking distance                          |                                                                | 250 m                                                          |
| Max. Altitude difference to tap                |                                                                | 100 m                                                          |
| Max. Number of users per outlet/tap            |                                                                | 250                                                            |
| Min. tap flow                                  |                                                                | 0.1 l/s                                                        |
| Max. Tap flow                                  |                                                                | 0.2 l/s                                                        |
| Water demand pattern                           |                                                                |                                                                |
| 7:00 AM - 10:00 AM                             | 30 % of daily demand                                           |                                                                |
| 10:00 AM - 5:00 PM                             | 40 % of daily demand                                           |                                                                |
| 5:00 PM - 7:00 PM                              | 30 % of daily demand                                           |                                                                |
| 7:00 PM - 7:00 AM                              | 0 % of daily demand (negligible)                               |                                                                |
| Peak demands                                   |                                                                |                                                                |
| Peak factor                                    | 1.37 – 3.6                                                     |                                                                |
| Residual heads                                 |                                                                |                                                                |
| Min.                                           | 7 m                                                            |                                                                |
| Max.                                           | 56 m                                                           |                                                                |
| Optimum for psp                                | 15 m                                                           |                                                                |
| Optimum velocity                               | 0.7-3.0 m/s                                                    | if less than 0.7m/s a washout provision should be put in place |
| Reservoir sizing                               | Storage capacity= $\frac{1}{2}$ the total daily demand for GFS |                                                                |
| Max. Water subtraction from the source         | 70%                                                            |                                                                |
|                                                |                                                                |                                                                |

## II. Design Horizons

The design horizon is the time frame to be considered when designing physical components of the water supply systems. The component sizes are designed to meet the demand for water as it can be projected to the design horizon (design demand). After the design horizon the system capacity would require augmentation given that the horizon is less than the life expectancy of some of the components in question.

Taking 2007 as the initial year, the major components of the water supply, i.e. the source works, transmission main, storage reservoirs and the primary distribution network have been designed for a design horizon of 20 years (the year 2027).

### 5.2.2 Water Demand Projections (See annex)

Based on the results of the socio-economic survey carried out in the project area, the population's economic levels are relatively low. The design of the piped water supply is therefore based on the assumption that the domestic demand will be met by provision of limited house connections and water kiosks and institutional demand will be met by provision of yard connections.

The demand projection is based on the population projections, design criteria and the anticipated service levels.

### 5.3 Service levels

The different service levels for domestic water supplies as anticipated in relation to the design period form the basis of the water demand distribution. The table below shows the quantities of the proposed service level distributions for the supply areas. The population near the source area shall benefit from the tap provided at the source area and shall not pay the tariff like those in the core area.

The service levels as shown in the table below were based on the field assessments of the existing physical structures and the settlement pattern.

| Table 10Service levels           |        |
|----------------------------------|--------|
| Service level                    | Number |
| Public tap stands (water kiosks) | 6      |
| Yard tap stands                  | 40     |
| House connections                | 20     |

The quantity of the service level was based on the baseline survey conducted.

The key selection criteria were as follows;

- > Well maintained basic service level, standard water supply and sanitation installations functioning for the community.
- > The system to be technically sound and was the preference for the community.
- Social economic status of the community and through further interaction revealed the willingness; community can afford to make contributions towards the operations and maintenance costs of the service provided i.e. bringing the water point closer to them.
- Kiosks were considered in a bid to provide an additional security to the structures and fittings to avoid theft of water meters, valves. Theft of tap heads was common in old system and used in the process of making a local brew (waragi).

# 6 DESIGN FOR THE GRAVITY FLOW SYSTEM

## 6.1 GENERAL

The feasible water supply system design options selected and recommended have been based on the technologies that are affordable and compatible with the community. The design aimed at providing self sustaining facilities and services for the residents.

Based on the findings, ground water formed the preferred design option. The study therefore proceeded to ground water exploitation. Water shall be abstracted directly from the springs at Rwembogo and Nyakatare all sources located in Katuna, Kamuganguzi subcounty and shall be gravitated through a combination of pipes to reservoir tank.

The quality of the water was found to be within the limits of the Uganda National guideline Values for Rural Drinking water , and so there is no need for disinfections or any treatment, but source catchment protection is vital at this stage to avoid contamination of the sources in future.

## 6.2 SOURCE CHARACTERISTICS

The water quality results (*in the annexes*) reveal that the spring is not contaminated by faecal coliforms. The spring should therefore be properly protected against the reach of animals and at least 30m away from any pit latrines on the upstream end to prevent human/animal excreta getting into contact with the spring waters.

Though there was no faecal matter traced in the water samples examined, human activity around all the sources might affect the quantity and quality of water in future. Little vegetation cover is left up stream due to cultivation and grazing.

# 6.3 ABSTRACTION, TRANSMISSION AND DISTRIBUTION

## 6.3.1 Abstraction and Transmission

70% of the safe yield shall be abstracted from the springs at Kabaliisa, Rwembogo and Nyakatare to undergo primary treatment through sedimentation tanks of 1.5m<sup>3</sup> each, which shall be located at the source. The remaining 30% shall be left for the maintenance of the existing eco-biodiversity system. A 10 m<sup>3</sup> break pressure tank will be constructed to reduce the force with which water would flow through the pipes. The choice of this capacity was to avoid damage of the retaining structure. Water shall then be transmitted through a series of pipelines using HDPE pipes to the reservoir tank. Abstraction shall be done after protecting the spring and construction of intakes works. The works shall also include fencing off at least 50x100m of the area surrounding the spring and planting trees within the fenced area. The Transmission Main shall comprise different pipe sizes of different classes. Details are in the table below;

| Table 11Transmission pipeline details |                 |                    |
|---------------------------------------|-----------------|--------------------|
| Pipe size(mm)                         | Pipe type/class | Section length (m) |
| 90                                    | HDPE PN6        | 450                |
| 90                                    | HDPE PN10       | 400                |
| 75                                    | HDPE PN6        | 2000               |
| 75                                    | HDPE PN10       | 500                |
| 75                                    | HDPE PN16       | 4000               |
| TOTAL                                 |                 | 7,350              |

### 6.3.2 Reservoir Tank

Based on the design criteria, the capacity of the reservoir was designed to equal half the projected daily water demand in the design horizon of 20 years, which is 90m<sup>3</sup> and shall be constructed out of 530mm thick brick wall masonry structures, installed with water level indicator, overflow pipe wash out, accessibility ladders provisions. (*See drawing details*).

### 6.3.3 Distribution Network

The distribution network was designed to meet the maximum peak hour demand. This was obtained from the questionnaires compiled during the field visits. It was established that fetching is done approximately in this range of hours with their following corresponding percentages of daily demand as shown in the table below;

| Table 12 Water Gerhand Patterns |                  |                            |
|---------------------------------|------------------|----------------------------|
| Time of fetching                | Duration (hours) | Percentage of daily demand |
| 7:00AM – 10:00AM                | 3                | 30                         |
| 10:00AM – 5:00PM                | 6                | 40                         |
| 5:00PM – 7:00PM                 | 4                | 30                         |
| 7:00PM – 7:00AM                 | 11               | Negligible                 |

Table 12Water demand patterns

The consideration of the peak hour demand was considered to be the best option for rural areas, because it considers the different consumption patterns, and thus avoids people lining up at tap stands. The peak factors used ranging from 1.37 - 3.6.

The Table below gives the section lengths and the corresponding pipe sizes and types:

| Pipe size(mm) | Pipe type/class | Section length (m) |
|---------------|-----------------|--------------------|
| Katuna        |                 |                    |
| 110           | HDPE PN6        | 450                |
| 90            | HDPE PN6        | 3600               |
| 50            | HDPE PN6        | 300                |
| 40            | HDPE PN6        | 200                |
| 32            | HDPE PN6        | 1,000              |
| 25            | HDPE PN6        | 1,000              |
| Total 1       |                 | 6,550              |
| Kabaliisa     |                 |                    |
| 90            | HDPE PN6        | 700                |
| 50            | HDPE PN6        | 1000               |
| 32            | HDPE PN6        | 700                |
| 25            | HDPE PN6        | 200                |
| Total 2       |                 | 2,600              |
| Grand total   |                 | 9,150              |

Table 13 Distribution Network details

The scheme was designed to serve six (6) public Water Kiosks with double faucets/outlets, located at maximum walking distance of 250m with regard to the population and flowing at 0.11/s and 0.21/s as the minimum and maximum discharges respectively. Forty (40) yard taps can also be served under the design, Twenty (20) in-house connections were considered (This put into consideration households with in-house water networks system, flush toilet, bath tabs and showers).

## 6.3.4 Pipeline Summary

| Table 14 Pipe line summar | У                |
|---------------------------|------------------|
| Mains                     | Total Length (m) |
| TRANSMISSION              | 7,350            |
| DISTRIBUTION              | 9,150            |
| TOTAL                     | 16,500           |

| able 14 | Pipe line summarv |
|---------|-------------------|
|         |                   |

### 6.3.5 Supply Area

Considering the water and sanitation situation in the area, it has been realized that some parts of the supply area have piped water supply systems, a case being Kabaliisa Parish, Rwakakobe. Fringe areas of upper Katuna have an existing GFS.

### 6.3.6 Intervention Strategy

Kabaliisa GFS needs rehabilitation and areas of focus are the source areas, tap stands and management structure, and extension along Katuna road to serve Kanyanjokye and Rwakakobe. To make Kabalisa sustainable, we propose the system to be metered and an affordable tariff be instituted. However, this option needs political intervention and rigorous sensitization of the communities.

# 7 SANITATION PROPOSAL

### 7.1 General

As part of the activities, sanitation and safe hygiene practices associated with the water supply and sanitation facilities shall be promoted.

Alternative sanitation systems like Ecological Sanitation should be explored especially for households because of high water table on the lower part of the town and the hard rocks on the upper part of the part of the town which are hard to excavate for pit latrines.

Ecological sanitation (Eco-san) is an alternative sanitation system that attempts to address the shortcomings of the traditional systems (pit latrines, and flush toilets). It is based on the Eco-system approach and treats human urine and feaces as valuable resource to be recycled and preventing pollution rather than attempting to control it. It takes away smell, reduces quantity to handle and makes the human excreta harmless too be used as fertilizers.

### 7.2 Eco – san versus conventional system

In comparison to Eco – san toilets, these are some of the disadvantages of the conventional systems of sanitation which would compel one to adapt the Eco - san:

- Most of them contaminate water sources through ground infiltration.
- High risk of disease spread and contamination (disease transmission route, e.g. leaking sewers, sludge production, open defecation).
- Conventional system uses a lot of water and hence reduction in quantity for other uses (especially, flush systems) and considering that the system proposed is a gravity flow, the quantity of water supplied is constant. With increasing population there would be a high need for flushing which would end up in some sort of competition for the different uses.

Research has shown that on average that a person uses 15,000Litres of water (*drinking water quality*) to flush; this water could be put to other useful purposes. It is easier to handle feaces alone without mixing with the water and urine and feaces potentially dangerous to pollute thousands of litres of safe water.

They provide an opportunity for vectors to breed, especially leaking sewer which are favorable for pathogens to breed).

### 7.3 Eco – san versus pit latrines

Pit latrines are most common in these areas and widely used but have their shortcomings;

- Require a lot of land as they keep shifting to different sites when ever the pit is full.
- Contaminates ground water resources as they are normally deep.
- Does not work in areas that are densely populated, flooded, have soft soils, or rocky which was evident during the baseline survey.
- This system above all wastes the nutrient value that is found in the human excreta; urine as a fertilizer, and feaces are very good soil conditioner. Considering that this is an agricultural community, the components would be put to good use.

Basing on the above comparisons, it is generally accepted that eco - san would best suit the community in question. Sanitation promotion will strengthen the need for sanitation facilities while emphasizing hygienic aspects.
## 8 ENVIRONMENTAL IMPACT ASSESSEMENT (EIA)

EIA is the systematic examination conducted to determine whether or not the project will have any adverse impacts on the environment. Katuna Water Supply and Sanitation Scheme shall pass through forests, steep hill slopes, roads shoulders, cross roads. Therefore, as regards to the scheme, the following impacts have been identified;

- a) Abstraction of water from the spring shall have an impact on the natural flora and fauna that has resulted and existed along the stream.
- b) Soil erosion (minimal) from construction works along the steep slopes.
- c) Interruptions in road traffic during the construction of road crossings
- d) Reduction in water related diseases due to the provision within reasonable distances of clean and safe water.

Furthermore, no historic sites shall be interfered with. No population relocation shall be required.

For the above impacts, the following mitigation measures are proposed;

- a) Abstraction shall be limited to 70% of yield
- b) Soil erosion control
- c) Phased road crossing constructions so that traffic is flowing at any one time.
- d) Provision of adequate water.

Environmental Impact Assessments for the above mentioned Water and sanitation schemes were carried out and mitigations for the identified negative impacts detailed in the Environmental Impact Statement report. Following the commencement of source protection, it was an Environmental requirement to assess the effectiveness of the proposed mitigations and mitigate any unexpected arising negative impact. Therefore, a team from the Consultant's ventured into field assessment activity.

37

#### Methodology

The following methods were used;

- Reviewing site literature
- Site interviews
- Observations
- Taking measurement using a 50m tap measure
- Taking pictures

#### Areas of interest at the water source points

#### Environmental (Aquatic and Terrestrial)

- Clearing natural vegetation
- down stream flow interference
- Erosion and land slide
- Water catchment status (fire incidences)

#### Environmental conservation structures

- Soil and water conservation structures
- Source land fencing
- Tree planting

#### Environmental Health

- Risk of source eye contamination
- Site safety
- Excreta disposal facility
- Solid waste disposal at site
- Existence of the storm drainage channel

#### Socio-economic Environment

- Local people availed with job opportunities
- Working relations of the site workers with the community
- Community complaints

#### 8.2 Key impacts and mitigation measures

This presents the key potential impacts of the proposed development and proposes mitigation measures against the adverse ones.

| Water source | Environmental                                                                                                                                                                                                                                                                                                                      | Environmental                                                                                 | Environmental Health                                                                                                                                                                                                                                      | Socio-economic                                   | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| point        |                                                                                                                                                                                                                                                                                                                                    | conservation structures                                                                       |                                                                                                                                                                                                                                                           | Environment                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rwembogo     | - Needs to acquire<br>at least 5,000sqm of<br>land around the<br>source area.<br>- source yield is 1.3<br>l/s and the design<br>yield is 0.9 l/s there<br>is enough water left<br>for aquatic life,<br>though there will be<br>reduced flow down<br>stream but no<br>significant effect to<br>the aquatic and<br>terrestrial life. | - Fencing off the<br>source catchment<br>area would prevent<br>human activity and<br>animals. | <ul> <li>there are no<br/>settlements around<br/>the source</li> <li>No pit Latrines in the<br/>vicinity of source area.<br/>Ecological Sanitation<br/>is required at the<br/>source for use during<br/>construction and post<br/>construction</li> </ul> | - Local community<br>availed to the<br>community | <ul> <li>Desist from cutting<br/>natural vegetation with<br/>an aim of later<br/>planting trees</li> <li>Fencing<br/>requirements by<br/>improving the size of<br/>the holes for fencing<br/>poles (60cm by 30cm)<br/>and using treated<br/>poles, and live fence<br/>like phobia, .</li> <li>List of recommended<br/>tree species which<br/>include; Prunus<br/>Africana, Khaya red<br/>mahogany, Lovoa<br/>specie, measopsis<br/>should be provided to<br/>contractors and<br/>already existing trees<br/>and shrubs</li> </ul> |

 Table 15
 Water point environmental status and restoration plan matrix

## Table 14 contn'd

| Water source      | Environmental                                                                                                                                                                                                                                                                                                      | Environmental                                                                             | Environmental Health                                                                                                                                                                                                                                      | Socio-economic                                                                    | Recommendation                                                                                                                                                                                                                                                           |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| point             |                                                                                                                                                                                                                                                                                                                    | conservation structures                                                                   |                                                                                                                                                                                                                                                           | Environment                                                                       |                                                                                                                                                                                                                                                                          |
| Nyakatare         | <ul> <li>Needs to acquire<br/>at least 5,000sqm of<br/>land around the<br/>source area.</li> <li>source yield is 0.9<br/>l/s and the design<br/>yield is 0.6 l/s there<br/>is enough water left<br/>for aquatic life .</li> </ul>                                                                                  | -                                                                                         | <ul> <li>there are no<br/>settlements around<br/>the source</li> <li>No pit Latrines in the<br/>vicinity of source area.<br/>Ecological Sanitation<br/>is required at the<br/>source for use during<br/>construction and post<br/>construction</li> </ul> | - Local community<br>availed with jobs                                            | <ul> <li>Any source<br/>protection excavation<br/>works should not be<br/>done during rainy<br/>season</li> <li>10 hedge rows to be<br/>planted along a<br/>distance of 48m<br/>upstream</li> <li>Desist from any<br/>activity within 70<br/>meters up stream</li> </ul> |
| Kabalisa<br>(1&2) | - Nearly all natural<br>vegetation has been<br>cut down only grass<br>is left for animals                                                                                                                                                                                                                          | Though the springs<br>are protected, the<br>entire catchments are<br>in somebody's, firm. | -                                                                                                                                                                                                                                                         | - One of the<br>sources only<br>benefits one<br>person, the owner<br>of the land. | - Tree planting is<br>recommended<br>And Surface run off<br>retaining structures<br>constructed.                                                                                                                                                                         |
| Kiniogo           | <ul> <li>Cultivation is<br/>intensive and very<br/>close to the spring.</li> <li>Children have made<br/>the source area a<br/>meeting and playing<br/>point. Sanitation<br/>around the spring is<br/>not good. Likelihood<br/>of contaminating the<br/>source.</li> <li>no interference<br/>with stream</li> </ul> | -no environmental<br>conservation structure<br>in place                                   | - a lot of human<br>activity, likely to lead<br>to contamination of<br>the sources.                                                                                                                                                                       | Neighboring<br>communities<br>benefit from this<br>source                         | <ul> <li>Desist from cutting<br/>natural vegetation<br/>were it is not<br/>necessary</li> <li>More land should be<br/>should be secured<br/>and fenced off to<br/>avoid human activity.</li> </ul>                                                                       |

| sector activity                               | Potential impacts                                  | Effects                                                                                                  | Mitigation measures                                                                                                                                                                                                                        | Responsibility            |
|-----------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                               | Negative Impacts                                   |                                                                                                          |                                                                                                                                                                                                                                            |                           |
| Pre-construction<br>Phase<br>Land acquisition | Land in disputes                                   | <ul> <li>delays in project set<br/>off</li> </ul>                                                        | <ul> <li>Land titles secured before any<br/>works</li> </ul>                                                                                                                                                                               | Sub county/<br>WSC<br>DWO |
| Transportation of<br>Materials                | <ul> <li>Silently increased<br/>traffic</li> </ul> | <ul> <li>Possibility of<br/>accidents</li> <li>dust</li> </ul>                                           | <ul><li>Low speed driving</li><li>Watering of the access road</li></ul>                                                                                                                                                                    | Contractor                |
| Construction Phase                            |                                                    |                                                                                                          |                                                                                                                                                                                                                                            |                           |
| Land take                                     | Change in land use                                 | <ul> <li>Some of Endangered<br/>sensitive species<br/>extincted</li> <li>Loss of biodiversity</li> </ul> | <ul> <li>Identification of endangered<br/>sensitive fauna and flora in the<br/>area before development and<br/>preserve it or relocate it</li> </ul>                                                                                       | Contractor                |
| Source protection                             | <ul><li>Soil erosion</li><li>Land slides</li></ul> | <ul> <li>Contaminating the water source</li> <li>Destroying the water source</li> </ul>                  | <ul> <li>Minimising Agricultural and<br/>constructional activities around<br/>the catchment</li> <li>Construction of the diversion<br/>channels</li> <li>Contour trenching</li> <li>Maintenance of the vegetation<br/>up stream</li> </ul> | Contractor                |
| Demarcation and fencing                       | Loss of<br>vegetation/farm crops                   | Complaints from community                                                                                | <ul> <li>Boundaries clearly demarcated<br/>before fencing</li> </ul>                                                                                                                                                                       | Sub county/<br>WSC        |

 Table 16
 Impact-Effect Mitigation Matrix

Table 15 Contn'd

| sector activity                                          | Potential impacts                                   | Effects                                                                                                                                                                                 | Mitigation measures                                                                                                                                                                                                                          | Responsibility    |
|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Bush clearing of site                                    | Change in land use                                  | <ul> <li>Vegetation destruction</li> <li>Destruction of wildlife<br/>habitats</li> <li>Soil erosion</li> </ul>                                                                          | <ul> <li>Tree planting</li> <li>Restore some of the destroyed sites</li> <li>Establishing procedures for reducing soil erosion around the reservoir and water source point e.g morden methods of farming</li> </ul>                          | Contractor<br>DWO |
| Excavations                                              | Quarries/Borrows pits                               | <ul> <li>Large quantities of<br/>materials removed</li> <li>Vegetation destruction</li> <li>Large gaping holes</li> <li>Usual nuisance e.g<br/>mosiguitoe breeding<br/>sites</li> </ul> | <ul> <li>Site restoration after<br/>construction</li> <li>Use of the excavated soil</li> <li>Tree planting</li> <li>Soil filling and compacting all<br/>holes during and after<br/>construction</li> </ul>                                   | Contractor        |
| Construction of<br>reservoir tanks and<br>pipe trenches  | Surface Runoff                                      | Soil Erosion                                                                                                                                                                            | <ul> <li>Minimal site disturbance</li> <li>Controlled/checked drainage in<br/>soft spots</li> <li>Slope control</li> <li>Re-forestation of exposed</li> </ul>                                                                                | Contractor        |
| Occupational health ,<br>health and safety of<br>workers | <ul><li>Accidents</li><li>Poor sanitation</li></ul> | <ul> <li>Poor sanitation related<br/>diseases</li> </ul>                                                                                                                                | <ul> <li>Projective wear and equipment<br/>should be provided</li> <li>Safety guidelines</li> <li>Latrine should be provided for<br/>the workers</li> <li>Safe adequate water for<br/>drinking and bathing should be<br/>provided</li> </ul> | Contractor        |

### Table 15 Contn'd

| sector activity                                                                 | Potential impacts                                                      | Effects                                                                                                                                             | Mitigation measures                                                                                                                                                                | Responsibility                |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Creation of<br>employment during<br>project construction                        | <ul> <li>Unexpected<br/>population influx to<br/>Katuna</li> </ul>     | <ul> <li>Pressure on meager<br/>resource</li> </ul>                                                                                                 | <ul> <li>Most employment opportunities<br/>should be given to the<br/>residents of the sub – county</li> </ul>                                                                     | Sub county                    |
|                                                                                 |                                                                        | <ul> <li>Altered social order<br/>due to population<br/>increase</li> <li>Likely incidence of<br/>STIs with a focus on<br/>HIV infection</li> </ul> | <ul> <li>Plan for them especially<br/>workers' infrastructure such as<br/>pit latrines, safe water, security<br/>measures etc</li> <li>HIV/AIDS awareness<br/>campaigns</li> </ul> | contractor                    |
| Post construction<br>Phase<br>Operation and<br>maintenance<br>Scheme management | <ul> <li>Increased waste<br/>water</li> <li>Poor management</li> </ul> | <ul> <li>Nuisances e.g<br/>mosquito breeding<br/>sites</li> <li>Non functionality of</li> </ul>                                                     | <ul> <li>A drainage system should be put into place</li> <li>Membership to SWUWS</li> </ul>                                                                                        | Sub<br>county/WSC<br>WSC/DWO/ |
|                                                                                 |                                                                        | water points                                                                                                                                        | which trains water<br>management committees                                                                                                                                        | Sub county                    |

| Issue/Component               | Environmental Indicator                  | Responsibility  |
|-------------------------------|------------------------------------------|-----------------|
| Noise, dust, vibration during | - Record of complaints from public       | Sub county/DWO/ |
| construction                  |                                          | WSC/            |
| Occupational health and       | - Record of accidents                    | Sub county/DWO/ |
| safety of workers and public  | - Health and safety guidelines           | WSC/            |
| Land cover protection during  | - Evidence of trees planted              | Sub county/DWO/ |
| construction                  | - Record of compensation for plantations | WSC/            |
| Soil erosion                  | - Evidence of bare soils                 | Sub county/DWO/ |
|                               |                                          | WSC/            |
| Streams drying                | - Decreased levels of waters flowing in  | Sub county/DWO/ |
|                               | the streams                              | WSC/            |
| Mismanagement of the          | - Records of complaints from the public  | Sub county/DWO/ |
| scheme                        | - High rate of non-functionality of the  | WSC/            |
|                               | water points                             |                 |

Table 17Summary of Environmental monitoring plan

#### 8.3 **Positive impacts of the Project**

#### Socio-economic

**Water supply:** Safe water coverage in Katuna will increase to nearly 100%. This is because the scheme target is to cover all the population in the area.

**Sanitation:** The poor sanitation in terms of poor conditions and status of the existing structures will change for the better through sanitation awareness campaigns and ecological sanitation toilets construction and promotion.

**Employment:** A good number of people will be employed by the project to carry out different services or through sale of some of the locally available construction materials required.

#### **Bio-physical Environment**

Vegetation cover will increase as a result of the environmental protection programme. Under this programme trees will be planted to protect the soil and improve the authenticity of the area with in the protection area especially the source area.

## 9 OPERATION AND MAINTENANCE STRATEGY

Sustainability of water and sanitation systems through proper and effective Operation and Maintenance has been recognized by government as a priority activity in order to safeguard infrastructural investments. It is widely acknowledged that most projects fail due to inappropriate O & M. The root of this state of affairs varies from political to social, technical and economic considerations, among which problems of inadequate management have been identified as a constraint.

The O & M strategy must be laid in the planning phase to emphasize the need to sustain the investment for the economic and the social good of every stakeholder especially the beneficiaries. It was established that the existing water supply is not fully functional because there is no management structure in place. The two most feasible management options which have emerged are as outlined below:

- **Option 1:**The Katuna local authority (sub county) as the provider and overseer of basic social services, delegate the management of the water supply and sanitation facilities to the proposed Katuna Water users Association (KAWU) through a Memorandum-of-Understanding that would require the KAWU to contract out the day to -day operations of the facilities directly to a private sector utility operator which can be a legal entity or an individual.
- **Option 2:**The Katuna local authority (Sub County) as the provider and overseer of the basic social services, directly enter into a management contract with a private sector utility operator which can be a legal entity or an individual for the operation and maintenance of the water supply and sanitation facilities. However, the town council delegates management and day-to-day operation oversight of service delivery activities to the KAWU through a Memorandum-of-Understanding.

To achieve the above stated, below are strategies which if implemented will result in a self sustaining Water supply system.

1) The community shall select a Water and Sanitation Implementation committee (WSC) comprising of eleven members of which at least six shall be women. This committee shall help in mobilization of community members during implementation of the scheme. They will work on behalf of the community to execute all community obligations on their behalf including supervision and monitoring. This committee shall be trained and sensitized about water and sanitation activities, and their roles as community representatives.

- 2) After implementation of the scheme, the sub county in which this scheme shall elect a Water and Sanitation Board from the water user association comprising of five members three of which are from the community, one a sub county chief and one member a councilor in water in charge of social services. To emphasize on Gender balance at least two members shall be Women.
- 3) The Water Supply and Sanitation Board (WSSB) shall open a bank account in the names of Katuna Water Supply and Sanitation Scheme, on which deposits can be made accruing form the water sales and any other income generating activities. The signatories to the account shall be three.
- 4) They shall employ a Scheme Operator/private operator who will be responsible for the day to day running of the scheme. In this proposal, a provision for training a scheme Operator (SO) has been considered under the soft ware component The Scheme Operator shall undergo training in management, accounting and budgeting and record/book keeping. The scheme operator/private operator shall be answerable to the Water and Sanitation Board.
- 5) The community as the end users should pay for the services provided, that is, pay for water services and sanitation services to meet the O & M costs. The fee shall be determined by the WSC together with implementing partner during test running. However, this option needs political intervention and rigorous sensitization of the communities.
- 6) It is highly recommended that in the short term plan the scheme should employ the Scheme Operator shall be paid an agreed percentage of the total collections, as a baseline 40% can be considered for the scheme to be able save some money for sustainability and in the long run services of a private operator can be procured.
- 7) It is also highly recommended that the scheme should apply to the South Western Umbrella of Water and Sanitation (SWUWS) funded by the Directorate of Water Development (DWD) and will benefit from pooling together resources with other schemes. SWUWS is an association of water users represented by their Water Supply and Sanitation Boards (WSSB).

The DWO will use the guidelines below to conduct O & M training for future user communities. The training will target leaders within the community; the Sub county leaders, Executive members of LC III council, heads of institutions within the water supply area, Opinion leaders, Representatives of persons with private connections, Extension staff and WSC members, WSSB members and SO applicants on he roles and responsibilities of each stake holder to avoid conflict.

O & M training will be conducted in four days and techniques applied include;

(See annex for the training guide)

- Brain storming
- Participatory lecture
- Group discussions

Evaluation of the training will be done at the end of each day and interviews for SO conducted at end of the training.

## Goal

Equip essential actors in O & M with knowledge to manage the constructed systems sustainably.

## Objectives

By the end of the training participants should be able to;

- i) Understand the management of water and sanitation systems.
- ii) Get an overview of O & M
- iii) Identify actors in O & M and their respective roles and responsibilities in scheme management.
- iv) Gain knowledge on daily operations of the scheme.
- v) Know the basics of taking meter readings and making proper records.
- vi) Describe the layout of the scheme with all hydraulic constructions, their use and maintenance schedule.
- vii) Recognize the importance of keeping proper records and be able to keep proper records for water and sanitation scheme.
- viii) Grasp basics in checking money records
- ix) Know the importance of budgeting, and the budgeting process.

## **10 RECOMEDATIONS AND CONCLUSIONS**

#### 10.1 Conclusion

- 1) The springs from Nyakatare and Rwembogo should be combined to serve the main Katuna area up to the end point in Mukarangye. Both springs are currently used by communities around them.
- From the feasibility study carried out, it was recommended that the Kabaliisa Scheme needs to be rehabilitated and extended to serve Rwakakobe and Nyamengo communities.
- 3) However, for some minimal impacts identified, mitigation measures have been recommended This general conclusion is therefore, that the project can be implemented provided that the stakeholders implements the mitigation measures recommended by this study.

#### **10.2 Recommendations**

- The community should be involved from the start to avoid chickening out on their respective responsibilities and especially the local people should be given priority for skilled and semi – skilled jobs.
- For sustainability, we propose the system should be metered except the community taps at the sources; this will reduce on the water wastages, misuse and for proper accountability of the user fees generated.
- 3. Land take should be adequately compensated and land titles processed
- 4. Eco-san toilets should be encouraged as an alternative sanitation system, since it attempts to address the shortcomings of the traditional systems preventing pollution rather than attempting to control it.

## 11 ANNEXES:

- 1) Demand Projections.
- 2) Water quality analysis report.
- 3) Survey results.
- 4) Hydraulic design.
- 5) Pressure vs. Time at Tap stands
- 6) O&M Training Guide
- 7) Detailed Cost estimate (Bills of quantities)
- 8) Drawings (schematic layout, profiles, hydraulic structures).

#### Water demand projections

Population equivalent gives the calculated amount of consumers reduced to an average per capita consumption of 25 liters per day. It helps to establish the actual population served. This and sheet is for the line using Rwembogo and Nyakatare Sources, so it does not include communities and institutions of Kabaliisa, Rwakakobe and Nyamengo which will be supplied by the line using Rwembogo and Nyakatare Sources, so it does not include communities and institutions of Kabaliisa, Rwakakobe and Nyamengo which will be supplied by the

|                                             |                                     |                       |                               |                             | per hh                       |                                   |                                 | 0                                                 |              |                                     |                                               |
|---------------------------------------------|-------------------------------------|-----------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------------|---------------------------------|---------------------------------------------------|--------------|-------------------------------------|-----------------------------------------------|
| of people supplied with tap stands          | 7                                   | 5                     |                               |                             | Population gr                | rowth rate [                      | %]                              | 3                                                 |              |                                     |                                               |
| of people supplied with yard connections    | 2                                   | 0                     |                               |                             | Design Perio                 | d [years]                         | _                               | 20                                                |              |                                     |                                               |
| of people supplied with inhouse connections | 5                                   | 5                     |                               |                             | Multiplying fa               | Multiplying factor                |                                 |                                                   |              |                                     |                                               |
| Item Consu<br>n [l / c                      | imptio Curi<br>apita] Popul<br>seri | rent<br>lation<br>ved | Current<br>Deman<br>d [l/day] | Current<br>Deman<br>d [l/s] | Projected<br>Demand<br>[l/s] | 7:00 -<br>10:00<br>(30%)<br>[l/s] | 10:00 -<br>17:00<br>(40%) [l/s] | 17:00 -<br>19:00<br>(30%) [l/s]<br>PEAK<br>DEMAND | PE<br>Factor | Current<br>Population<br>Equivalent | Projected<br>Populatio<br>n<br>Equivalen<br>t |
| nestic                                      |                                     |                       |                               |                             |                              |                                   |                                 | ·                                                 |              |                                     |                                               |
| ople served with Tapstands 2                | 5 18                                | 57                    | 46425                         | 0.537                       | 0.970                        | 2.329                             | 1.331                           | 3.494                                             | 1.00         | 1857                                | 3354                                          |
| ople served with Yard Connections 4         | 0 49                                | 5.2                   | 19808                         | 0.229                       | 0.414                        | 0.994                             | 0.568                           | 1.491                                             | 1.60         | 792                                 | 1431                                          |
| ople served with Indoor Connections 8       | 0 123                               | 3.8                   | 9904                          | 0.115                       | 0.207                        | 0.497                             | 0.284                           | 0.745                                             | 3.20         | 396                                 | 716                                           |
| titutions                                   |                                     |                       |                               |                             |                              |                                   |                                 |                                                   |              |                                     |                                               |
| chools                                      |                                     |                       |                               |                             |                              |                                   |                                 |                                                   |              |                                     |                                               |
| y School 1 - International Nursery School   | 6 11                                | 0                     | 660                           | 0.008                       | 0.014                        | 0.033                             | 0.019                           | 0.050                                             | 0.24         | 26                                  | 48                                            |
| y School 2 - Little angels                  | 6 3                                 | 9                     | 234                           | 0.003                       | 0.005                        | 0.012                             | 0.007                           | 0.018                                             | 0.24         | 9                                   | 17                                            |
| y School 3 - Katuna P/S                     | 6 40                                | )9                    | 2454                          | 0.028                       | 0.051                        | 0.123                             | 0.070                           | 0.185                                             | 0.24         | 98                                  | 177                                           |
| y School 4 - Mayengo P/S                    | 37                                  | 78                    | 2268                          | 0.026                       | 0.047                        | 0.114                             | 0.065                           | 0.171                                             | 0.24         | 91                                  | 164                                           |
| arding School 1 - Mukarangye PS 2           | 5 36                                | 62                    | 9050                          | 0.105                       | 0.189                        | 0.454                             | 0.259                           | 0.681                                             | 1.00         | 362                                 | 654                                           |
| ealth institutions                          |                                     |                       |                               |                             |                              |                                   |                                 |                                                   |              |                                     |                                               |
| spensary - Name (No. of IDP) 10             | 00                                  |                       | 0                             | 0.000                       | 0.000                        | 0.000                             | 0.000                           | 0.000                                             | 4.00         | 0                                   | 0                                             |
| spensary - Name 2                           | 0                                   |                       | 0                             | 0.000                       | 0.000                        | 0.000                             | 0.000                           | 0.000                                             | 0.80         | 0                                   | 0                                             |
| alth center - Name (No. of IPD) 10          | 00                                  |                       | 0                             | 0.000                       | 0.000                        | 0.000                             | 0.000                           | 0.000                                             | 4.00         | 0                                   | 0                                             |
| alth center - Kamuganguzi health centre 2   | 0 15                                | 50                    | 3000                          | 0.035                       | 0.063                        | 0.151                             | 0.086                           | 0.226                                             | 0.80         | 120                                 | 217                                           |
| spital (ID patients) 10                     | 00                                  |                       | 0                             | 0.000                       | 0.000                        | 0.000                             | 0.000                           | 0.000                                             | 4.00         | 0                                   | 0                                             |
| spital (OD patients) 2                      | 0                                   |                       | 0                             | 0.000                       | 0.000                        | 0.000                             | 0.000                           | 0.000                                             | 0.80         | 0                                   | 0                                             |
| spital (staff and family) 2                 | 5                                   | _                     | 0                             | 0.000                       | 0.000                        | 0.000                             | 0.000                           | 0.000                                             | 1.00         | 0                                   | 0                                             |
| Churches and Mosques                        |                                     |                       |                               |                             |                              |                                   |                                 |                                                   |              |                                     |                                               |
| urch 1 - Mukarange Romas Catholic           | 60                                  | 00                    | 3600                          | 0.042                       | 0.075                        | 0.181                             | 0.103                           | 0.271                                             | 0.24         | 144                                 | 260                                           |
| urch - Mukarange COU                        | 5 51                                | 0                     | 3060                          | 0.035                       | 0.064                        | 0.154                             | 0.088                           | 0.230                                             | 0.24         | 122                                 | 221                                           |

Katuna Gravity flow scheme final report

50 DSCA Const

BIOSCA Consultants Ltd.

| Item                                      | Consumptio<br>n [l / capita] | Current<br>Populatio<br>n served | Current<br>Deman<br>d<br>[I/day] | Current<br>Deman<br>d [l/s] | Projected<br>Demand<br>[l/s] | 7:00 -<br>10:00<br>(30%)<br>[l/s] | 10:00 -<br>17:00<br>(40%)<br>[I/s] | 17:00 -<br>19:00<br>(30%) [l/s]<br>PEAK<br>DEMAND | PE<br>Factor | Current<br>Population<br>Equivalent | Projected<br>Population<br>Equivalent |
|-------------------------------------------|------------------------------|----------------------------------|----------------------------------|-----------------------------|------------------------------|-----------------------------------|------------------------------------|---------------------------------------------------|--------------|-------------------------------------|---------------------------------------|
| osque 2 - Katuna Mosque                   | 6                            | 3                                | 18                               | 0.000                       | 0.000                        | 0.001                             | 0.001                              | 0.001                                             | 0.24         | 1                                   | 1                                     |
| urch 3 - Katuna Roman Catholic            | 6                            | 5                                | 30                               | 0.000                       | 0.001                        | 0.002                             | 0.001                              | 0.002                                             | 0.24         | 1                                   | 2                                     |
| urch 4 - (No. of residents)               | 6                            |                                  | 0                                | 0.000                       | 0.000                        |                                   |                                    |                                                   | 0.24         | 0                                   | 0                                     |
| urch 5 - St. Emmanuel's Mayengo COU       | 6                            | 10                               | 60                               | 0.001                       | 0.001                        | 0.003                             | 0.002                              | 0.005                                             | 0.24         | 2                                   | 4                                     |
| lotels and Restaurants                    |                              |                                  |                                  |                             |                              |                                   |                                    |                                                   |              |                                     |                                       |
| tel 1 - Name (No. of persons per night)   | 80                           |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 3.20         | 0                                   | 0                                     |
| tel 2 - Name (No. of persons per night)   | 80                           |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 3.20         | 0                                   | 0                                     |
| dge 1 - Name (No. of persons per night)   | 40                           |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 1.60         | 0                                   | 0                                     |
| dge 2 - Name (No. of persons per night)   | 40                           |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 1.60         | 0                                   | 0                                     |
| staurant 1 - Name (No. of guests per day) | 6                            |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 0.24         | 0                                   | 0                                     |
| staurant 2 - Name (No. of guests per day) | 6                            |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 0.24         | 0                                   | 0                                     |
| staurant 3 - Name (No. of guests per day) | 6                            |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 0.24         | 0                                   | 0                                     |
| staurant 4 - Name (No. of guests per day) | 6                            |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 0.24         | 0                                   | 0                                     |
| overnment institution                     |                              |                                  |                                  |                             |                              |                                   |                                    |                                                   |              |                                     |                                       |
| bcounty headquater (No. of residents)     | 25                           |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 1.00         | 0                                   | 0                                     |
| bcounty headquater (No. of staff<br>bers) | 6                            |                                  | 0                                | 0.000                       | 0.000                        | 0.000                             | 0.000                              | 0.000                                             | 0.24         | 0                                   | 0                                     |
| ther institutions                         |                              |                                  |                                  |                             |                              |                                   |                                    |                                                   | 0.00         | 0                                   | 0                                     |
| tuna Customs and Immigration              | 6                            | 107                              | 642                              | 0.007                       | 0.013                        | 0.032                             | 0.018                              | 0.048                                             | 0.24         | 26                                  | 46                                    |
|                                           |                              |                                  |                                  |                             |                              |                                   |                                    |                                                   |              |                                     |                                       |
|                                           |                              |                                  | 101213                           | 1.171                       | 2.116                        | 5.078                             | 2.902                              | 7.617                                             |              | 4049                                | 7312                                  |

# Water demand projection continued

# Water quality test results

| Site/source                                                | Appearance | Odour     | Hq       | Turbidity (TU) | Electrical conductivity(µS/cm) | Temperature(0C) | Chlorides(mg/l) | Nitrite(mg/l) as N | Iron (mg/l) | Total Coliforms(cfu/100ml) | Faecal coliforms E-Coli | Total Hardness(mg/l) as CaCO <sub>3</sub> |
|------------------------------------------------------------|------------|-----------|----------|----------------|--------------------------------|-----------------|-----------------|--------------------|-------------|----------------------------|-------------------------|-------------------------------------------|
| Kinioga                                                    | Colourless | Odourless | 4.99     | 0.8            | 220                            | 23.5            | 6               | 0.13               | 1.2         | 0                          | 0                       | 80                                        |
| Rwembogo                                                   | Colourless | Odourless | 5        | 1              | 240                            | 22.5            | 6               | 0.14               | 1.2         | 0                          | 0                       | 76                                        |
| Nyakatare                                                  | Colourless | Odourless | 5        | 0.7            | 250                            | 23.5            |                 | 0.14               | 1.1         | 0                          | 0                       | 82                                        |
| Kabaliisa                                                  | Colourless | Odourless | 5.5      | 0.8            | 230                            | 20.6            |                 | 0.12               | 1.1         | 0                          | 0                       | 100                                       |
| Uganda National guideline Values for<br>Rural Drinking H2O |            |           | 6.5 -8.5 | 10             | NG                             | Acceptable      | 250             | 1                  | 1           | NG                         | 0                       | 600                                       |
| Maximum Allowable Concentration                            |            |           | 5.5-9.5  | 30             | NG                             | Acceptable      | 500             | 1                  | 2           | NG                         | 50                      | 800                                       |

Note:

NG-Not Given

# Survey results

| Stn | Pt       | Hm  | Hu    | н     | Check  | Angle  | Ds    | S<br>Distance | ЧН     | Sum<br>dH | Remark                                            |
|-----|----------|-----|-------|-------|--------|--------|-------|---------------|--------|-----------|---------------------------------------------------|
| 0   |          |     |       |       |        | 7      |       | 0.00          |        | 300.00    |                                                   |
| 2   | 1        | 2   | 2 079 | 1 921 | 2      | 77.67  | 15.4  | 0.00          | -3.30  | 000.00    | protected Spring Rwembogo source                  |
| _   | 3        | 2   | 2.335 | 1.665 | 2      | 96.53  | 66.6  | 82.00         | - 7.57 | 289.13    | Open fields                                       |
| 4   | 3        | 2   | 2.181 | 1.82  | 2.0005 | 92.03  | 36.1  | 02.00         | 1.28   |           |                                                   |
|     | 5        | 2   | 2.341 | 1.66  | 2.0005 | 95.8   | 67.8  | 185.83        | - 6.85 | 283.57    | n                                                 |
| 6   | 5        | 2   | 2.154 | 1.847 | 2.0005 | 80.9   | 30.3  |               | - 4.79 |           |                                                   |
|     | 7        | 2   | 2.248 | 1.752 | 2      | 90.6   | 49.6  | 265.74        | -0.52  | 278.25    | "                                                 |
| 8   | 7        | 2   | 2.258 | 1.743 | 2.0005 | 80.51  | 50.8  |               | -8.37  |           |                                                   |
|     | 9        | 2   | 2.51  | 1.489 | 1.9995 | 98.47  | 101.0 | 417.52        | -4.87  | 255.00    | "                                                 |
| 10  | 9        | 2   | 2.435 | 1.564 | 1.9995 | 82.06  | 86.3  |               | -11.92 |           |                                                   |
|     | 11       | 2   | 2.511 | 1.489 | 2      | 92.27  | 102.1 | 605.91        | - 4.04 | 239.04    | "                                                 |
| 12  | 11       | 2   | 2.171 | 1.828 | 1.9995 | 90.2   | 34.3  |               | 0.12   |           |                                                   |
|     | 13       | 2   | 2.125 | 1.875 | 2      | 93.16  | 25.0  | 665.17        | -1.38  | 237.78    | Tap 1 at sabiti s home                            |
| 14  | 13       | 2   | 2.074 | 1.916 | 1.995  | 74.98  | 15.3  |               | -3.95  |           |                                                   |
|     |          |     |       |       |        |        |       |               | -3 11  |           | Rocky area and pranted trees                      |
|     | 15       | 2   | 2.045 | 1.955 | 2      | 111.9  | 8.4   | 688.78        | 5.70   | 230.72    | begins here                                       |
| 16  | 15       | 2   | 2.127 | 1.872 | 1.9995 | 76.53  | 24.8  |               | -5.78  | · ·       |                                                   |
|     | 17       | 2   | 2.212 | 1.787 | 1.9995 | 100.33 | 41.8  | 755.39        | -7.50  | 217.44    | End of Rocky area                                 |
| 18  | 17       | 2   | 2.344 | 1.657 | 2.0005 | 88.47  | 68.7  |               | -1.83  |           |                                                   |
|     | 19       | 2   | 2.197 | 1.803 | 2      | 103.96 | 38.2  | 862.30        | - 9.22 | 206.38    | At Sahabina's home (Break pressure tank location) |
| 20  | 19       | 2   | 2.169 | 1.83  | 1.9995 | 82.96  | 33.6  |               | -4.12  |           |                                                   |
|     | 21       | 2   | 2.11  | 1.889 | 1.9995 | 77     | 21.5  | 917.48        | 4.84   | 207.10    | Planted trees                                     |
| 22  | 21       | 2   | 2.145 | 1.855 | 2      | 87.75  | 29.0  |               | -1.14  |           |                                                   |
|     | 23       | 2   | 2.159 | 1.84  | 1.9995 | 94.75  | 31.8  | 978.25        | -2.63  | 203.33    | "                                                 |
| 24  | 23       | 2   | 2.285 | 1.715 | 2      | 90.96  | 57.0  |               | 0.95   |           |                                                   |
|     | 25       | 2   | 2.151 | 1.849 | 2      | 89.65  | 30.2  | 1065.44       | 0.18   | 204.47    | "                                                 |
| 26  | 25       | 2   | 2.089 | 1.911 | 2      | 68.59  | 16.6  |               | -6.05  |           |                                                   |
|     | 27       | 2   | 2.109 | 1.891 | 2      | 105.08 | 21.0  | 1103.06       | -5.48  | 192.95    | "                                                 |
| 28  | 27       | 2   | 2.119 | 1.88  | 1.9995 | 65.57  | 21.8  |               | - 9.00 |           |                                                   |
|     | 29       | 2   | 2.399 | 1.601 | 2      | 92.38  | 79.7  | 1204.55       | -3.31  | 180.64    | "                                                 |
| 30  | 29       | 2   | 2.108 | 1.891 | 1.9995 | 93.02  | 21.7  |               | 1.14   |           |                                                   |
|     | 31       | 2   | 2.121 | 1.88  | 2.0005 | 102.9  | 23.5  | 1249.71       | -5.24  | 176.53    | "                                                 |
| 32  | 31       | 2   | 2.089 | 1.911 | 2      | 78.06  | 17.4  |               | - 3.60 |           |                                                   |
|     | 33       | 2   | 2.259 | 1.741 | 2      | 105.43 | 49.9  | 1317.06       | - 3.29 | 159.65    | Bihind Banshabire s house                         |
| 34  | 33       | 2   | 2.039 | 1.961 | 2      | 67.5   | 7.2   | 1051-5        | - 2.76 | / <b></b> |                                                   |
|     | 35       | 2   | 2.137 | 1.864 | 2.0005 | 88.53  | 27.3  | 1351.56       | 0.70   | 157.59    | Magara shouse                                     |
| 36  | 35       | 2   | 2.043 | 1.957 | 2      | 72.75  | 8.2   | 1005.01       | - 2.44 |           |                                                   |
|     | 37       | 2   | 2.189 | 1.811 | 2      | 110.22 | 35.5  | 1395.24       | -12.26 | 142.89    |                                                   |
| 38  | 31       | 2   | 2.139 | 1.86  | 1.9995 | /1.12  | 26.4  | 4454.07       | -ö.54  | 400.04    |                                                   |
| 40  | 39       | 2   | 2.158 | 1.842 | 2      | 111.35 | 29.4  | 1451.07       | -10.71 | 123.64    |                                                   |
| 40  | 39       | 2   | 2.13  | 1.8/  | 2      | /0.84  | 24.6  | 4507.40       | -0.00  | 400.04    |                                                   |
| 40  | 41       | 2   | 2.31  | 1.69  | 2      | 96.87  | 61.6  | 1537.19       | -1.30  | 108.21    | PBM Bishops guest house                           |
| 42  | 41       | 2   | 2.28/ | 1./13 | 2      | 88.01  | 5/.4  | 4000 45       | -1.99  | 405.04    |                                                   |
| 4.4 | 43<br>12 | 2   | 2.224 | 1.75  | 1.9995 | 90.74  | 44.9  | 1039.45       | - U.SX | 105.64    | karnuganguzi s.s                                  |
| 44  | 43       | 2   | 2.241 | 1.675 | 2 0005 | Q0.00  | 45.0  | 175/ 02       | -0.22  | 102.02    |                                                   |
|     | 40       | ۷ ک | 2.320 | 1.070 | Z.000J | 30.13  | 0.1   | 17,04.00      | -0.22  | 102.02    |                                                   |

## Transmission main from Rwembogo source to reservoir tank

| 46       | 45 | 2 | 2.328 | 1.672 | 2      | 87.64  | 65.5  |         | -2.70  |        |                                  |
|----------|----|---|-------|-------|--------|--------|-------|---------|--------|--------|----------------------------------|
|          | 47 | 2 | 2.465 | 1.535 | 2      | 91.35  | 93.0  | 1912.55 | -2.19  | 97.13  |                                  |
| 48       | 47 | 2 | 2.354 | 1.645 | 1.9995 | 89.07  | 70.9  |         | -1.15  |        |                                  |
|          |    |   |       |       |        |        |       |         | 10     |        | PBM at sign post of kamuganguzi  |
|          | 49 | 2 | 2.449 | 1.551 | 2      | 89.24  | 89.8  | 2073.23 | .19    | 97.18  | S.S                              |
| 50       | 49 | 2 | 2.528 | 1.473 | 2.0005 | 90.31  | 105.5 |         | 0.57   |        |                                  |
|          | 51 | 2 | 2.508 | 1.491 | 1.9995 | 89.62  | 101.7 | 2280.43 | 0.67   | 98.42  | PBM Jn to Kabura / Nyakatare     |
| 52       | 51 | 2 | 2.519 | 1.481 | 2      | 90.37  | 103.8 |         | -0.67  |        |                                  |
|          | 53 | 2 | 2.359 | 1.642 | 2.0005 | 89.18  | 71.7  | 2455.92 | 1.03   | 98.78  | Along the main road to Katuna    |
| 54       | 53 | 2 | 2.57  | 1.43  | 2      | 90.03  | 114.0 |         | - 0.06 |        |                                  |
|          | 55 | 2 | 2.742 | 1.259 | 2.0005 | 90.19  | 148.3 | 2718.22 | -0.49  | 98.22  | "                                |
| 56       | 55 | 2 | 2.468 | 1.531 | 1.9995 | 89.65  | 93.7  |         | 0.57   |        |                                  |
|          | 57 | 2 | 2.714 | 1.288 | 2.001  | 89.91  | 142.6 | 2954.52 | 0.22   | 99.02  | "                                |
| 58       | 57 | 2 | 2.381 | 1.619 | 2      | 91.09  | 76.2  |         | -1.45  |        |                                  |
|          | 50 | • | 0.000 | 4.000 | 4 0005 | 00.04  | 400.0 | 2462.25 | 3.84   | 101 11 | Kamuganguzi health centre 111    |
| 60       | 59 | 2 | 2.003 | 1.330 | 1.9995 | 88.34  | 132.0 | 3103.35 | 0.71   | 101.41 |                                  |
| 60       | 59 | 2 | 2.511 | 1.469 | 2 0005 | 04.20  | 102.2 | 2270 44 | 0.71   | 00 55  | Tan 0 at Daguna                  |
| <u> </u> | 01 | 2 | 2.535 | 1.400 | 2.0005 | 91.38  | 100.9 | 3372.41 | - 2.07 | 99.55  | Tap 2 at Baguma                  |
| 62       | 61 | 2 | 2.577 | 1.424 | 2.0005 | 88.99  | 115.3 | 0000.00 | 2.03   | 400.40 |                                  |
| - 0.4    | 63 | 2 | 2.603 | 1.397 | 2      | 89.6   | 120.6 | 3608.29 | 0.84   | 102.43 | kamuganguzi trading centre Tap 3 |
| 64       | 63 | 2 | 2.588 | 1.411 | 1.9995 | 90.05  | 11/./ | 0040 50 | - 0.10 | 400.05 |                                  |
|          | 65 | 2 | 2.587 | 1.411 | 1.999  | 89.55  | 117.6 | 3843.59 | 0.92   | 103.25 | Along Katuna road                |
| 66       | 65 | 2 | 2.694 | 1.306 | 2      | 91.11  | 138.8 | 4445.00 | - 2.69 | 100.00 |                                  |
|          | 67 | 2 | 2.665 | 1.335 | 2      | 88.59  | 133.0 | 4115.32 | 3.27   | 103.83 | "                                |
| 68       | 67 | 2 | 2.546 | 1.456 | 2.001  | 90.26  | 109.0 | 4004.04 | - 0.49 | 404.00 |                                  |
|          | 69 | 2 | 2.699 | 1.3   | 1.9995 | 90.68  | 139.9 | 4364.21 | - 1.66 | 101.68 | "                                |
| 70       | 69 | 2 | 2.505 | 1.495 | 2      | 88.89  | 101.0 | (-00.00 | 1.96   | 100.01 |                                  |
|          | 71 | 2 | 2.579 | 1.422 | 2.0005 | 90.64  | 115.7 | 4580.88 | - 1.29 | 102.34 |                                  |
| 72       | 71 | 2 | 2.435 | 1.566 | 2.0005 | 88.92  | 86.9  |         | - 1.64 |        |                                  |
|          | /3 | 2 | 2.632 | 1.366 | 1.999  | 90.48  | 126.6 | 4794.36 | - 1.06 | 99.64  | I ap 4 in Nyamirima village      |
| 74       | 73 | 2 | 2.444 | 1.557 | 2.0005 | 89.83  | 88.7  |         | -0.26  |        |                                  |
|          | 75 | 2 | 2.419 | 1.582 | 2.0005 | 89.68  | 83.7  | 4966.76 | 0.47   | 99.85  | PBM at Existing R. Iank          |
| 76       | 75 | 2 | 2.382 | 1.619 | 2.0005 | 90.82  | 76.3  |         | 1.09   |        |                                  |
|          | 77 | 2 | 2.451 | 1.548 | 1.9995 | 88.63  | 90.3  | 5133.33 | 2.16   | 103.10 | Along the road to Katuna         |
| 78       | 77 | 2 | 2.336 | 1.663 | 1.9995 | 89.36  | 67.3  |         | -0.75  |        |                                  |
|          | 79 | 2 | 2.435 | 1.565 | 2      | 89.06  | 87.0  | 5287.61 | 1.43   | 103.77 | "                                |
| 80       | 79 | 2 | 2.434 | 1.566 | 2      | 89.39  | 86.8  |         | -0.92  |        |                                  |
|          | 81 | 2 | 2.481 | 1.519 | 2      | 89.85  | 96.2  | 5470.61 | 0.25   | 103.10 | Jn to Mayengo C.OU. Sign post    |
| 82       | 81 | 2 | 2.29  | 1.71  | 2      | 100.46 | 57.0  |         | 0.35   |        |                                  |
|          | 83 | 2 | 2.314 | 1.688 | 2.001  | 77.32  | 61.1  | 5588.72 | 3.41   | 126.86 | End point at Proposed R. Tank    |

Transmission main from Rwembogo source to reservoir tank continued

| Stn | Pnt | Hm | Hu    | HI    | Check  | Angle | Ds    | S Distance | dH     | Sum dH | Remark                  |
|-----|-----|----|-------|-------|--------|-------|-------|------------|--------|--------|-------------------------|
| 0   |     |    |       |       |        |       |       | 0.00       |        | 100.00 |                         |
| 2   | 1   | 2  | 2.32  | 1.68  | 2      | 79.15 | 62.9  |            | -11.83 |        | Nyakatare source        |
|     | 3   | 2  | 2.522 | 1.477 | 1.9995 | 99.19 | 103.2 | 166.01     | -16.48 | 71.69  | Kiregyeya s farm        |
| 4   | 3   | 2  | 2.268 | 1.732 | 2      | 81.62 | 53.0  |            | - 7.73 |        |                         |
|     | 5   | 2  | 2.123 | 1.875 | 1.999  | 97.22 | 24.6  | 243.65     | - 3.09 | 60.87  |                         |
| 6   | 5   | 2  | 2.23  | 1.77  | 2      | 93.98 | 45.9  |            | 3.19   |        |                         |
|     | 7   | 2  | 2.092 | 1.907 | 1.9995 | 87.06 | 18.5  | 308.01     | 0.95   | 65.01  |                         |
| 8   | 7   | 2  | 2.24  | 1.76  | 2      | 89.63 | 48.0  |            | - 0.31 |        |                         |
|     | 9   | 2  | 2.151 | 1.849 | 2      | 84.36 | 30.1  | 386.06     | 2.95   | 67.65  | At Bamwanga s Residance |
| 10  | 9   | 2  | 2.298 | 1.703 | 2.0005 | 82.67 | 59.0  |            | -7.53  |        | -                       |
|     | 11  | 2  | 2.148 | 1.851 | 1.9995 | 96.14 | 29.5  | 474.61     | - 3.16 | 56.96  |                         |
| 12  | 11  | 2  | 2.33  | 1.669 | 1.9995 | 87    | 66.0  |            | - 3.45 |        |                         |
|     | 13  | 2  | 2.422 | 1.579 | 2.0005 | 91.34 | 84.3  | 624.89     | -1.97  | 51.54  |                         |
| 14  | 13  | 2  | 2.262 | 1.738 | 2      | 93.5  | 52.3  |            | 3.19   |        |                         |
|     | 15  | 2  | 2.139 | 1.862 | 2.0005 | 82.47 | 27.5  | 704.66     | 3.60   | 58.33  |                         |
| 16  | 15  | 2  | 2.314 | 1.687 | 2.0005 | 84.23 | 62.4  |            | - 6.27 |        |                         |
|     | 17  | 2  | 2.4   | 1.6   | 2      | 95.84 | 79.6  | 846.62     | - 8.10 | 43.96  | Kabura trading centre.  |
| 18  | 17  | 2  | 2.291 | 1.708 | 1.9995 | 85.43 | 58.1  |            | - 4.63 |        |                         |
|     | 19  | 2  | 2.308 | 1.691 | 1.9995 | 90.25 | 61.7  | 966.44     | - 0.27 | 39.06  |                         |
| 20  | 19  | 2  | 2.273 | 1.727 | 2      | 88.16 | 54.6  |            | - 1.75 |        |                         |
|     | 21  | 2  | 2.265 | 1.735 | 2      | 90.32 | 53.0  | 1074.01    | - 0.30 | 37.01  |                         |
| 22  | 21  | 2  | 2.291 | 1.709 | 2      | 86.74 | 58.1  |            | -3.30  |        |                         |
|     | 23  | 2  | 2.34  | 1.66  | 2      | 91.17 | 68.0  | 1200.10    | - 1.39 | 32.32  |                         |
| 24  | 23  | 2  | 2.42  | 1.582 | 2.001  | 88.55 | 83.8  |            | - 2.12 |        |                         |
|     | 25  | 2  | 2.335 | 1.665 | 2      | 88.54 | 67.0  | 1350.85    | 1.71   | 31.90  | At PBM Jn to Nyakatare  |

Nyakatare source to line from Rwembogo source

### Katuna town Distribution main

| _   |          |        |        |         |             |                | _            | S        |        | Sum    |                                |
|-----|----------|--------|--------|---------|-------------|----------------|--------------|----------|--------|--------|--------------------------------|
| Stn | Pnt      | Hm     | Hu     | HI      | Check       | Angle          | Ds           | Distance | dH     | dH     | Remark                         |
| 0   |          |        |        |         |             |                |              | 0.00     |        | 100.00 |                                |
| 2   | 1        | 2      | 2.31   | 1.691   | 2.0005      | 77.32          | 60.4         |          | - 3.26 |        | Proposed R.Tank                |
|     |          |        |        |         |             |                |              |          |        |        | PBM Jn to Mayengo C.O.U-       |
|     | 3        | 2      | 2.291  | 1.709   | 2           | 100.54         | 57.2         | 117.61   | -10.47 | 76.28  | katuna road                    |
| 4   | 3        | 2      | 2.3    | 1.7     | 2           | 89.16          | 60.0         |          | - 0.88 |        |                                |
|     | _        | •      | 0.450  | 4 5 40  |             |                |              | 000.00   | 0.40   | 75 50  | Tinka s house TAP.5 katuna     |
|     | 5        | 2      | 2.459  | 1.542   | 2.0005      | 89.9           | 91.7         | 269.30   | 0.16   | /5.56  | town                           |
| 6   | 5        | 2      | 2.349  | 1.65    | 1.9995      | 89.43          | 69.9         |          | -0.70  |        | T                              |
|     | 7        | 2      | 2 400  | 1 501   | 2           | 00.04          | 00.0         | 120.00   | 0.20   | 75 1 / | Twestme s nouse TAP.6          |
| 0   | 7        | 2      | 2.499  | 1.501   | 2 0005      | 09.04          | 99.0         | 439.00   | 0.20   | 75.14  |                                |
| 0   | 1        | 2      | 2.407  | 1.314   | 2.0005      | 09.74          | 97.3         | 642.20   | - 0.44 | 74.00  | Deiere e Steven TAD 7          |
| 40  | 9        | 2      | 2.535  | 1.400   | 2<br>4 0005 | 09.00          | 107.0        | 043.30   | 0.22   | 74.92  | Bajara's Steven TAP.7          |
| 10  | 9        | 2      | 2.251  | 1.748   | 1.9995      | 90.05          | 50.3         | = 1 = 00 | 0.04   |        |                                |
|     | 11       | 2      | 2.258  | 1.742   | 2           | 89.56          | 51.6         | 745.20   | 0.40   | 75.36  | Byekwaso Yusufu TAP. 8         |
| 12  | 11       | 2      | 2.198  | 1.802   | 2           | 90.34          | 39.6         |          | 0.23   |        |                                |
|     | 13       | 2      | 2.451  | 1.549   | 2           | 91.48          | 90.2         | 874.96   | - 2.33 | 73.27  | bldg TAP.9                     |
| 14  | 13       | 2      | 2.155  | 1.845   | 2           | 91.09          | 31.0         |          | 0.59   | -      |                                |
|     |          |        |        |         |             |                |              |          |        |        | Byenaku s house. Along         |
|     | 15       | 2      | 2.32   | 1.681   | 2.0005      | 89.78          | 63.9         | 969.86   | 0.25   | 74.11  | Rubaya road. TAP.10            |
| 16  | 15       | 2      | 2.236  | 1.764   | 2           | 90.33          | 47.2         |          | 0.27   |        |                                |
|     | 17       | 2      | 2.47   | 1.529   | 1.9995      | 89.49          | 94.1         | 1111.15  | 0.84   | 75.21  | Musinga s house TAP.11         |
| 18  | 17       | 2      | 2      | 1.728   | 1.9995      | 90.01          | 54.3         |          | 0.01   |        |                                |
| _   | 19       | 2      | 2.575  | 1.426   | 2.0005      | 90.78          | 114.9        | 1280.34  | - 1.56 | 73.66  | Richard s house TAP.12         |
| 20  | 19       | 2      | 2.461  | 1,539   | 2           | 91.26          | 92.2         |          | 2.03   |        |                                |
|     |          |        |        |         |             |                |              |          |        |        | Katuna p/s 200m off TAP.13 And |
|     | 21       | 2      | 2.62   | 1.379   | 1.9995      | 91.05          | 124.1        | 1496.60  | - 2.27 | 73.41  | TAP.14 at Musime               |
| 22  | 21       | 2      | 2.36   | 1.64    | 2           | 90.74          | 72.0         |          | 0.93   |        |                                |
|     | 00       | n      | 0 201  | 1.60    | 2 0005      | 00 22          | 76.4         | 1644.66  | 0.26   | 76 71  | TAP.15 at katabagwa s house.   |
| 04  | 23       | 2      | 2.301  | 1.02    | 2.0005      | 00.22          | 70.1<br>50.5 | 1044.00  | 2.30   | 70.71  | Rubaya Roau                    |
| 24  | 23       | 2      | 2.203  | 1.730   | 2.0005      | 07.00          | 52.5         |          | - 1.94 |        | TAD 16 of Hajiji Nizinwa a     |
|     | 25       | 2      | 2 369  | 1 632   | 2 0005      | 90.36          | 73 7         | 1770 82  | - 0.46 | 74 30  |                                |
| 26  | 25       | 2      | 2.000  | 1.6/1   | 2.0005      | 00.55          | 71.0         | 1110.02  | 0.40   | 74.00  |                                |
| 20  | 25       | 2      | 2.00   | 1.041   | 2.0003      | 30.33          | 11.3         |          | 0.03   |        | End of katuna town TAP 17 at   |
|     | 27       | 2      | 2.313  | 1.688   | 2,0005      | 90.34          | 62.5         | 1905.22  | - 0.37 | 74.62  | Kvenkobe s                     |
| 28  | 27       | 2      | 2.321  | 1.679   | 2           | 89.99          | 64.2         |          | - 0.01 |        |                                |
| 20  | 29       | 2      | 2.52   | 1 44    | 2           | 89             | 112.0        | 2081 40  | 1 95   | 76 56  | Along Rubaya road              |
| 30  | 20       | 2      | 2 4 27 | 1 572   | 1 9995      | 91 10          | 85.5         | 2001.40  | 1.78   | 10.00  |                                |
|     | 21       | 2      | 2.421  | 1 520   | 2           | 80.17          | 02.2         | 2250 07  | 1 3/   | 70.69  | "                              |
| 30  | 21       | 2      | 2.401  | 1 /7    | 1 0005      | 00.17<br>00.04 | 105.0        | 2203.01  | 0.07   | 13.00  |                                |
| 32  | 01<br>22 | 2      | 2.029  | 1.47    | 1.5335      | 90.04          | 95.0         | 2460 07  | 0.07   | 70.76  | TAD 18 at Katti a rasidanaa    |
| 24  | <u></u>  | 2      | 2.429  | 1.07    | 1.3333      | 00.04          | 00.9         | 2400.07  | 1.07   | 19.10  |                                |
| 54  | ১১       | 2      | 2.5/   | 1.429   | 1.9992      | 89.01          | 114.1        |          | - 1.97 |        | Protected enring ovicting 10m  |
|     | 35       | 2      | 2 405  | 1 594   | 1 9995      | 88 94          | 81 1         | 2646 04  | 1 50   | 79 29  |                                |
| 36  | 35       | 2      | 2.400  | 1.534   | 1 9995      | 80.54          | 73.0         | 2040.04  | - 0.53 | 13.23  |                                |
| 30  | 27       | 2<br>2 | 2.303  | 1 / 1 1 | 1.3330      | 03.33          | 117 0        | 0007 70  | 2 20   | 76 56  |                                |
| 20  | 31       | 2      | 2.009  | 1.411   | 2 004       | 91.07          | 11/.0        | 2031.12  | - 2.20 | 10.00  |                                |
| ১১  | 31       | 2      | 2.443  | 1.559   | 2.001       | 90.01          | ŏŏ.4         |          | 0.02   |        |                                |

|    |    |   |       |       |        |       |       |         |        |       | TAP.19 at Julius Maney        |
|----|----|---|-------|-------|--------|-------|-------|---------|--------|-------|-------------------------------|
|    | 39 | 2 | 2.39  | 1.61  | 2      | 89.96 | 78.0  | 3004.12 | 0.05   | 76.63 | changer s house               |
| 40 | 39 | 2 | 2.49  | 1.51  | 2      | 89.64 | 98.0  |         | - 0.62 |       |                               |
|    |    |   |       |       |        |       |       |         |        |       | Jn to Mukarangye P/S. Its on  |
|    | 41 | 2 | 2.646 | 1.355 | 2.0005 | 89.61 | 129.1 | 3231.21 | 0.88   | 76.90 | a high hill                   |
| 42 | 41 | 2 | 2.396 | 1.603 | 1.9995 | 90.43 | 79.3  |         | 0.60   |       |                               |
|    | 43 | 2 | 2.41  | 1.591 | 2.0005 | 88.42 | 81.9  | 3392.38 | 2.26   | 79.75 | Along katuna road             |
| 44 | 43 | 2 | 2.671 | 1.329 | 2      | 90.14 | 134.2 |         | 0.33   |       |                               |
|    | 45 | 2 | 2.461 | 1.54  | 2.0005 | 89.49 | 92.1  | 3618.67 | 0.82   | 80.90 | TAP. 20 at sana s house       |
| 46 | 45 | 2 | 2.521 | 1.48  | 2.0005 | 90.01 | 104.1 |         | 0.02   |       |                               |
|    |    |   |       |       |        |       |       |         |        |       | TAP. 21 at Twebaze s          |
|    | 47 | 2 | 2.61  | 1.389 | 1.9995 | 89.05 | 122.1 | 3844.86 | 2.02   | 82.94 | residance                     |
| 48 | 47 | 2 | 2.383 | 1.618 | 2.0005 | 89.14 | 76.5  |         | - 1.15 |       |                               |
|    |    |   |       |       |        |       |       |         |        |       | TBM Jn to Ryaruhinda          |
|    | 49 | 2 | 2.299 | 1.702 | 2.0005 | 90.14 | 59.7  | 3981.05 | - 0.15 | 81.65 | village                       |
| 50 | 49 | 2 | 2.321 | 1.68  | 2.0005 | 87.8  | 64.1  |         | - 2.46 |       |                               |
|    |    |   |       |       |        |       |       |         |        |       | End point Mukarangye          |
|    |    | _ |       |       |        |       |       |         |        |       | trading centre Tap.22 At late |
|    | 51 | 2 | 2.49  | 1.509 | 1.9995 | 89.61 | 98.1  | 4143.20 | 0.67   | 79.85 | bantu Residence               |

Katuna town Distribution main continued

Branch to Ryaruhindi Village

|     |     |    |       |       |        |       |      | S        |        | Sum   |                              |  |  |
|-----|-----|----|-------|-------|--------|-------|------|----------|--------|-------|------------------------------|--|--|
| Stn | Pnt | Hm | Hu    | HI    | Check  | Angle | Ds   | Distance | dH     | dH    | Remark                       |  |  |
|     |     |    |       |       |        |       |      |          |        |       | TBM Jn to Ryaruhinda         |  |  |
| 2   | 1   | 2  | 2.295 | 1.706 | 2.0005 | 90.67 | 58.9 |          | - 0.69 | 81.65 | village                      |  |  |
|     |     |    |       |       |        |       |      |          |        |       | Protected spring 6m off this |  |  |
|     | 3   | 2  | 2.388 | 1.612 | 2      | 87.41 | 77.5 | 136.42   | 3.50   | 85.15 | point                        |  |  |
| 4   | 3   | 2  | 2.078 | 1.923 | 2.0005 | 91.13 | 15.5 |          | -0.31  |       |                              |  |  |
|     |     |    |       |       |        |       |      |          |        |       | Along the road to            |  |  |
|     | 5   | 2  | 2.28  | 1.72  | 2      | 92.66 | 55.9 | 207.85   | - 2.60 | 82.25 | Ryaruhinda area              |  |  |
| 6   | 5   | 2  | 2.202 | 1.798 | 2      | 88.72 | 40.4 |          | 0.90   |       |                              |  |  |
|     | 7   | 2  | 2.271 | 1.729 | 2      | 87.55 | 54.2 | 302.39   | 2.31   | 85.46 | II.                          |  |  |
| 8   | 7   | 2  | 2.125 | 1.874 | 1.9995 | 92.29 | 25.1 |          | - 1.00 |       |                              |  |  |
|     | 9   | 2  | 2.112 | 1.888 | 2      | 88.33 | 22.4 | 349.86   | 0.65   | 85.11 | At Katabazi Residance        |  |  |
| 10  | 9   | 2  | 2.237 | 1.763 | 2      | 90.46 | 47.4 |          | - 0.38 |       |                              |  |  |
|     |     |    |       |       |        |       |      |          |        |       | Two Protected springs 3m     |  |  |
|     | 11  | 2  | 2.208 | 1.791 | 1.9995 | 84.6  | 41.5 | 438.78   | 3.91   | 88.64 | off this point               |  |  |
| 12  | 11  | 2  | 2.119 | 1.881 | 2      | 92.45 | 23.8 |          | - 1.02 |       |                              |  |  |
|     | 13  | 2  | 2.22  | 1.78  | 2      | 82.63 | 43.6 | 506.19   | 5.60   | 93.22 | Rwamafa Residance            |  |  |
| 14  | 13  | 2  | 2.138 | 1.863 | 2.0005 | 95.9  | 27.4 |          | -2.81  |       |                              |  |  |
|     |     |    |       |       |        |       |      |          |        |       | End point at Mbarara s       |  |  |
|     | 15  | 2  | 2.163 | 1.836 | 1.9995 | 82.36 | 32.4 | 565.96   | 4.31   | 94.72 | Residance. TAP 23            |  |  |

| Kabaliisa | Distribution | network |
|-----------|--------------|---------|
|-----------|--------------|---------|

|      |      |    |       |       |        |       |       | S        |        | Sum    |                             |  |
|------|------|----|-------|-------|--------|-------|-------|----------|--------|--------|-----------------------------|--|
| Stn  | Pnt  | Hm | Hu    | HI    | Check  | Angle | Ds    | Distance | dH     | dH     | Remark                      |  |
|      |      |    |       |       |        |       |       |          |        |        |                             |  |
|      | 1001 |    |       |       |        |       |       | 0.00     |        | 100.00 |                             |  |
| 1002 | 1001 | 2  | 2.076 | 1.925 | 2.0005 | 83.66 | 15.0  |          | - 1.66 |        | Reservoir Tank Position     |  |
|      | 1003 | 2  | 2.393 | 1.607 | 2      | 92.3  | 78.5  | 93.54    | - 3.15 | 95.19  | At Bamwanga/Along Rd.       |  |
| 1004 | 1003 | 2  | 2.355 | 1.646 | 2.0005 | 89.7  | 70.9  |          | 0.37   |        |                             |  |
|      | 1005 | 2  | 2.258 | 1.742 | 2      | 92.1  | 51.6  | 216.01   | - 1.89 | 92.93  | Tap 1 Jack                  |  |
| 1006 | 1005 | 2  | 2.188 | 1.812 | 2      | 88.29 | 37.6  |          | - 1.12 |        |                             |  |
|      | 1007 | 2  | 2.094 | 1.905 | 1.9995 | 93.4  | 18.9  | 272.46   | - 1.12 | 90.69  | Along Line                  |  |
| 1008 | 1007 | 2  | 2.145 | 1.854 | 1.9995 | 83.12 | 28.9  |          | - 3.46 |        |                             |  |
|      | 1009 | 2  | 2.152 | 1.848 | 2      | 98.42 | 30.1  | 331.42   | - 4.40 | 82.83  | Tap 2 Makosa Henry          |  |
| 1010 | 1009 | 2  | 2.358 | 1.64  | 1.999  | 84.58 | 71.5  |          | - 6.75 |        |                             |  |
|      | 1011 | 2  | 2.283 | 1.715 | 1.999  | 90.8  | 56.8  | 459.69   | - 0.79 | 75.28  | Tap 3 Mburaburirwe          |  |
| 1012 | 1011 | 2  | 2.268 | 1.731 | 1.9995 | 88.2  | 53.7  |          | - 1.69 |        |                             |  |
|      | 1013 | 2  | 2.289 | 1.712 | 2.0005 | 88    | 57.7  | 571.03   | 2.01   | 75.61  |                             |  |
| 1014 | 1013 | 2  | 2.168 | 1.832 | 2      | 84.37 | 33.4  |          | - 3.28 |        |                             |  |
|      | 1015 | 2  | 2.145 | 1.855 | 2      | 97.15 | 28.8  | 633.25   | - 3.58 | 68.75  | Tap 4 Fred Mwerinde         |  |
| 1016 | 1015 | 2  | 2.118 | 1.883 | 2.0005 | 83.1  | 23.3  |          | - 2.80 |        |                             |  |
|      |      |    |       |       |        |       |       |          |        |        | Tap 5 at PBM Jn to the main |  |
|      | 1017 | 2  | 2.05  | 1.95  | 2      | 85.43 | 10.0  | 666.54   | 0.79   | 66.74  | road                        |  |
| 1018 | 1017 | 2  | 2.105 | 1.895 | 2      | 85.87 | 20.9  |          | - 1.51 |        |                             |  |
|      | 1019 | 2  | 2.815 | 1.185 | 2      | 89.63 | 163.0 | 850.49   | 1.05   | 66.28  | Tap 6 Rukara Grace          |  |

# Branch to Kamuganguzi C.O.U, PS & SS

|     |     |    |       |       |        |       |       | S        |        | Sum   |                                                          |  |  |
|-----|-----|----|-------|-------|--------|-------|-------|----------|--------|-------|----------------------------------------------------------|--|--|
| Stn | Pnt | Hm | Hu    | HI    | Check  | Angle | Ds    | Distance | dH     | dH    | Remark                                                   |  |  |
|     |     |    |       |       |        |       |       | 666.54   |        | 66.74 | PBM Jn to the main road                                  |  |  |
| 2   |     | 2  | 2.129 | 1.87  | 1.9995 | 85.72 | 25.8  |          | -1.93  |       |                                                          |  |  |
|     |     | 2  | 2.632 | 1.388 | 2.01   | 90.57 | 124.4 | 816.77   | - 1.24 | 63.57 | Tap 7 at kabatereine.                                    |  |  |
| 4   |     | 2  | 2.181 | 1.821 | 2.001  | 88.8  | 36.0  |          | - 0.75 |       |                                                          |  |  |
|     |     |    |       |       |        |       |       |          |        |       | PBM at kamuganguzi s.s sign                              |  |  |
|     | 5   | 2  | 2.13  | 1.87  | 2      | 91.32 | 26.0  | 878.75   | - 0.60 | 62.22 | post                                                     |  |  |
| 6   | 5   | 2  | 2.439 | 1.561 | 2      | 89.17 | 87.8  |          | - 1.27 |       |                                                          |  |  |
|     |     |    |       |       |        |       |       |          |        |       | Along the road to kamuganguzi                            |  |  |
|     | 7   | 2  | 2.821 | 1.179 | 2      | 88.73 | 164.2 | 1130.70  | 3.64   | 64.59 | Along the road to kamuganguzi<br>s.s and a tap 8 for s.s |  |  |
| 8   | 7   | 2  | 2.376 | 1.625 | 2.0005 | 91.68 | 75.1  |          | 2.20   |       | Along the road to kamuganguzi<br>s.s and a tap 8 for s.s |  |  |
|     | 9   | 2  | 2.367 | 1.633 | 2      | 88.4  | 73.4  | 1279.14  | 2.05   | 68.84 |                                                          |  |  |
| 10  | 9   | 2  | 2.175 | 1.825 | 2      | 92.37 | 35.0  |          | 1.45   |       |                                                          |  |  |
|     | 11  | 2  | 2.429 | 1.57  | 1.9995 | 88.27 | 85.9  | 1399.97  | 2.59   | 72.87 | Tap 9 for kamuganguzi C.O.U                              |  |  |
| 12  | 11  | 2  | 2.112 | 1.888 | 2      | 88.03 | 22.4  |          | -0.77  |       |                                                          |  |  |
|     | 13  | 2  | 2.31  | 1.689 | 1.9995 | 88.7  | 62.1  | 1484.44  | 1.41   | 73.51 | Tap10 at kamuganguzi P/s                                 |  |  |
| 14  | 13  | 2  | 2.185 | 1.815 | 2      | 89.98 | 37.0  |          | - 0.01 |       |                                                          |  |  |
|     | 15  | 2  | 2.185 | 1.816 | 2.0005 | 88.83 | 36.9  | 1558.33  | 0.75   | 74.25 | Tap 11 at Agaba s residance                              |  |  |
| 16  | 43  | 2  | 2.047 | 1.952 | 1.9995 | 93.57 | 9.5   |          | 0.59   |       | Je se                |  |  |
|     | 45  | 2  | 2.224 | 1.775 | 1.9995 | 85.7  | 44.8  | 1612.59  | 3.36   | 78.20 | End Point at Tiberaba Tap 12                             |  |  |

| St | Pnt | Hm | Hu    | н     | Check  | Angle | Ds     | S<br>Distance | dH    | Sum<br>dH | Remark                          |
|----|-----|----|-------|-------|--------|-------|--------|---------------|-------|-----------|---------------------------------|
|    |     |    |       |       |        |       |        | 878.75        |       | 62.22     | PBM- Kamuganguzi s.s. Sign post |
| 2  | 1   | 2  | 2.528 | 1.473 | 2.0005 | 90.3  | 105.49 |               | 0.55  |           |                                 |
|    | 3   | 2  | 2.508 | 1.491 | 1.9995 | 89.62 | 101.7  | 1085.95       | 0.67  | 63.45     | PBM Jn to kabura                |
| 4  | 3   | 2  | 2.371 | 1.629 | 2      | 88.7  | 74.2   |               | 1.68  |           |                                 |
|    | 5   | 2  | 2.379 | 1.622 | 2.0005 | 88.43 | 75.7   | 1235.80       | 2.07  | 67.20     | Tap 13 at Mbare s home          |
| 6  | 5   | 2  | 2.362 | 1.639 | 2.0005 | 91.18 | 72.3   |               | -1.49 |           |                                 |
|    | 7   | 2  | 2.342 | 1.659 | 2.0005 | 86.32 | 68.2   | 1376.24       | 4.37  | 70.09     |                                 |
| 8  | 7   | 2  | 2.279 | 1.722 | 2.0005 | 89.67 | 55.7   |               | 0.32  |           |                                 |
|    |     |    |       |       |        |       |        |               |       |           | Tap 14End point Kabura trading  |
|    | 9   | 2  | 2.501 | 1.499 | 2      | 90.1  | 100.2  | 1532.14       | -0.17 | 70.23     | centre -                        |

Branch to Kabura Trading Centre

# Hydraulic design:

#### Kabaliisa Hydraulic calculations

| Pipe section | Chainag<br>e | Section<br>length | Altitude | Pipe<br>flow | P     | Pipe     | Velocity | Frictional | Cum<br>frictional | Residual | HGL elevation |
|--------------|--------------|-------------------|----------|--------------|-------|----------|----------|------------|-------------------|----------|---------------|
|              | (m)          | (m)               | (m)      | (L/s)        | Class | Dia (mm) | (m/s)    | loss (m)   | loss (m)          | head (m) | (m)           |
| Reservoir    | 0            |                   | 1845.7   |              |       |          |          |            |                   | 0        | 1845.7        |
| Tap 1        | 216          | 216.0             | 1838.6   | 2.8          | 6     | 90       | 0.6      | 1.0        | 1.0               | 6.1      | 1,844.7       |
| Tap 2        | 331          | 115.4             | 1828.5   | 2.6          | 6     | 90       | 0.5      | 0.5        | 1.5               | 15.7     | 1,844.2       |
| Тар 3        | 460          | 128.3             | 1820.9   | 2.4          | 6     | 90       | 0.5      | 0.4        | 1.9               | 22.8     | 1,843.8       |
| PT           | 571          | 111.3             | 1821.3   | 2.2          | 6     | 90       | 0.4      | 0.3        | 2.2               | 22.2     | 1,843.5       |
| Tap 4        | 633          | 62.2              | 1814.4   | 2.0          | 6     | 90       | 0.4      | 0.2        | 2.4               | 28.8     | 1,843.3       |
| Tap 5        | 665          | 31.3              | 1812.4   | 2.0          | 6     | 90       | 0.4      | 0.1        | 2.5               | 30.8     | 1,843.2       |
| Jn to Tap 12 | 667          | 2.0               | 1812.4   | 2.0          | 6     | 90       | 0.4      | 0.0        | 2.5               | 30.8     | 1,843.2       |
| Tap 6        | 851          | 184.0             | 1811.9   | 1.8          | 6     | 90       | 0.0      | 0.0        | 2.5               | 31.3     | 1,843.2       |

| Pipe section     | Chainage | Section<br>length | Altitude | Pipe<br>flow |       | Pipe     | Velocity | Frictional | Cum<br>frictional | Residual | HGL     |
|------------------|----------|-------------------|----------|--------------|-------|----------|----------|------------|-------------------|----------|---------|
|                  | (m)      | (m)               | (m)      | (L/s)        | Class | Dia (mm) | (m/s)    | loss (m)   | loss (m)          | head (m) | (m)     |
| Reservoir        | 0        |                   | 1845.7   |              |       |          |          |            |                   | 0        | 1845.7  |
| Tap 1            | 216      | 216.0             | 1838.6   | 2.8          | 6     | 90       | 0.6      | 1.0        | 1.0               | 6.1      | 1,844.7 |
| Tap 2            | 331      | 115.4             | 1828.5   | 2.6          | 6     | 90       | 0.5      | 0.5        | 1.5               | 15.7     | 1,844.2 |
| Тар 3            | 460      | 128.3             | 1820.9   | 2.4          | 6     | 90       | 0.5      | 0.4        | 1.9               | 22.8     | 1,843.8 |
| PT               | 571      | 111.3             | 1821.3   | 2.2          | 6     | 90       | 0.4      | 0.3        | 2.2               | 22.2     | 1,843.5 |
| Tap 4            | 633      | 62.2              | 1814.4   | 2.0          | 6     | 90       | 0.4      | 0.2        | 2.4               | 28.8     | 1,843.3 |
| Tap 5            | 665      | 31.3              | 1812.4   | 2.0          | 6     | 90       | 0.4      | 0.1        | 2.5               | 30.8     | 1,843.2 |
| Jn to Tap 6      | 667      | 2.0               | 1812.4   | 2.0          | 6     | 90       | 0.4      | 0.0        | 2.5               | 30.8     | 1,843.2 |
| Тар 7            | 817      | 150.2             | 1809.2   | 1.6          | 6     | 50       | 1.0      | 4.3        | 6.8               | 29.7     | 1,838.9 |
| Jn to Tap 13 &14 | 879      | 62.0              | 1807.9   | 1.4          | 6     | 50       | 0.9      | 1.4        | 8.2               | 29.6     | 1,837.5 |
| Тар 8            | 1,131    | 252.0             | 1810.2   | 1.0          | 6     | 50       | 0.6      | 3.1        | 11.3              | 24.2     | 1,834.4 |
| Тар 9            | 1,400    | 269.3             | 1818.5   | 0.8          | 6     | 50       | 0.5      | 2.2        | 13.5              | 13.7     | 1,832.2 |
| Tap 10           | 1,485    | 84.5              | 1819.2   | 0.6          | 6     | 50       | 0.4      | 0.4        | 13.9              | 12.6     | 1,831.8 |
| Tap 11           | 1,558    | 73.9              | 1819.9   | 0.4          | 6     | 50       | 0.3      | 0.2        | 14.1              | 11.7     | 1,831.6 |
| Tap 12           | 1,613    | 54.3              | 1823.9   | 0.2          | 6     | 50       | 0.1      | 0.0        | 14.1              | 7.7      | 1,831.6 |

#### Kabaliisa Hydraulic calculations continued

| Pipe section | Chainage | Section<br>length | Altitude | Pipe<br>flow |       | Pipe     | Velocity | Frictional | Cum<br>frictional | Residual | HGL elevation |
|--------------|----------|-------------------|----------|--------------|-------|----------|----------|------------|-------------------|----------|---------------|
| -            | (m)      | (m)               | (m)      | (L/s)        | Class | Dia (mm) | (m/s)    | loss (m)   | loss (m)          | head (m) | (m)           |
| Reservoir    | 0        |                   | 1845.7   |              |       |          |          |            |                   | 0        | 1845.7        |
| Tap 1        | 216      | 216.0             | 1838.6   | 2.8          | 6     | 90       | 0.6      | 1.0        | 1.0               | 6.1      | 1,844.7       |
| Tap 2        | 331      | 115.4             | 1828.5   | 2.6          | 6     | 90       | 0.5      | 0.5        | 1.5               | 15.7     | 1,844.2       |
| Тар 3        | 460      | 128.3             | 1820.9   | 2.4          | 6     | 90       | 0.5      | 0.4        | 1.9               | 22.8     | 1,843.8       |
| PT           | 571      | 111.3             | 1821.3   | 2.2          | 6     | 90       | 0.4      | 0.3        | 2.2               | 22.2     | 1,843.5       |
| Tap 4        | 633      | 62.2              | 1814.4   | 2.0          | 6     | 90       | 0.4      | 0.2        | 2.4               | 28.8     | 1,843.3       |
| Tap 5        | 665      | 31.3              | 1812.4   | 2.0          | 6     | 90       | 0.4      | 0.1        | 2.5               | 30.8     | 1,843.2       |
| Jn to Tap 6  | 667      | 2.0               | 1812.4   | 2.0          | 6     | 90       | 0.4      | 0.0        | 2.5               | 30.8     | 1,843.2       |
| Tap 7        | 817      | 150.2             | 1809.2   | 1.6          | 6     | 50       | 1.0      | 4.3        | 6.8               | 29.7     | 1,838.9       |
| Jn to Tap 12 | 879      | 62.0              | 1807.9   | 1.4          | 6     | 50       | 0.9      | 1.4        | 8.2               | 29.6     | 1,837.5       |
| PT           | 1,086    | 207.2             | 1810.2   | 1.0          | 6     | 32       | 0.6      | 4.5        | 12.7              | 22.8     | 1,833.0       |
| Tap 13       | 1,236    | 149.9             | 1812.9   | 0.2          | 6     | 32       | 0.6      | 3.2        | 15.9              | 16.8     | 1,829.8       |
| Tap 14       | 1,532    | 296.3             | 1815.9   | 0.2          | 6     | 32       | 0.3      | 1.8        | 17.7              | 12.1     | 1,828.0       |

#### Katuna Hydraulic calculations

| <b>D</b> :       | a .      | Section |          | Pipe   |       |             |          |                    | •        |          |           |
|------------------|----------|---------|----------|--------|-------|-------------|----------|--------------------|----------|----------|-----------|
| Pipe section     | Chainage | length  | Altitude | flow   | P     | 'ipe        | Velocity | <b>E</b> viational | Cum      | Desides  | HGL       |
|                  | (770)    | (ma)    | (772)    | (1 /=) |       | Dia<br>(mm) | (m)(a)   | Frictional         |          | Residual | elevation |
|                  | (m)      | (m)     | (m)      | (L/S)  | Class | (mm)        | (m/s)    | ioss (m)           | ioss (m) | nead (m) | (m)       |
| Reservoir        | 0        |         | 1845.7   |        |       |             |          |                    |          | 0        | 1845.7    |
| Tap 5            | 269      | 269.3   | 1821.2   | 3.8    | 6     | 110         | 0.5      | 0.7                | 0.7      | 23.8     | 1,845.0   |
| Tap 6            | 439      | 169.7   | 1820.8   | 3.6    | 6     | 110         | 0.5      | 0.4                | 1.1      | 23.8     | 1,844.6   |
| Tap 7            | 643      | 204.3   | 1821.0   | 3.4    | 6     | 90          | 0.7      | 1.3                | 2.4      | 22.3     | 1,843.3   |
| Tap 8            | 745      | 101.9   | 1821.0   | 3.2    | 6     | 90          | 0.6      | 0.6                | 3.0      | 21.7     | 1,842.7   |
| Tap 9            | 875      | 129.8   | 1818.0   | 3      | 6     | 90          | 0.6      | 0.7                | 3.7      | 24.0     | 1,842.0   |
| Tap 10           | 970      | 94.9    | 1819.0   | 2.8    | 6     | 90          | 0.6      | 0.4                | 4.1      | 22.6     | 1,841.6   |
| Tap 11           | 1,111    | 141.3   | 1820.0   | 2.6    | 6     | 90          | 0.5      | 0.6                | 4.7      | 21.0     | 1,841.0   |
| Tap 12           | 1,280    | 169.2   | 1819.3   | 2.4    | 6     | 90          | 0.5      | 0.6                | 5.3      | 21.1     | 1,840.4   |
| Jn to Tap 13 &14 | 1,497    | 216.3   | 1819.1   | 2.2    | 6     | 50          | 0.4      | 0.6                | 5.9      | 20.7     | 1,839.8   |
| Tap 15           | 1,645    | 148.1   | 1822.4   | 1.8    | 6     | 50          | 0.4      | 0.3                | 6.2      | 17.1     | 1,839.5   |
| Tap 16           | 1,771    | 126.2   | 1820.0   | 1.6    | 6     | 50          | 0.3      | 0.2                | 6.4      | 19.3     | 1,839.3   |
| Tap 17           | 1,905    | 134.4   | 1820.3   | 1.4    | 6     | 50          | 0.3      | 0.2                | 6.6      | 18.8     | 1,839.1   |
| Tap 18           | 2,451    | 545.7   | 1825.4   | 1.2    | 6     | 50          | 0.2      | 0.5                | 7.1      | 13.2     | 1,838.6   |
| PT               | 2,838    | 386.9   | 1822.2   | 1.0    | 6     | 50          | 0.2      | 0.3                | 7.4      | 16.1     | 1,838.3   |
| Tap 19           | 3,004    | 166.4   | 1822.3   | 1.0    | 6     | 50          | 0.2      | 0.1                | 7.5      | 15.9     | 1,838.2   |
| PT               | 3,232    | 227.1   | 1822.6   | 0.8    | 6     | 50          | 0.2      | 0.1                | 7.6      | 15.5     | 1,838.1   |
| Tap 20           | 3,619    | 387.5   | 1826.6   | 0.8    | 6     | 50          | 0.2      | 0.2                | 7.8      | 11.3     | 1,837.9   |
| Tap 21           | 3,846    | 226.5   | 1828.6   | 0.6    | 6     | 50          | 0.1      | 0.1                | 7.9      | 9.2      | 1,837.8   |
| Jn to Tap 23     | 3,982    | 136.2   | 1827.3   | 0.4    | 6     | 50          | 0.1      | 0.0                | 7.9      | 10.5     | 1,837.8   |
| Tap 22           | 4,144    | 162.2   | 1825.5   | 0.2    | 6     | 50          | 0.0      | 0.0                | 7.9      | 12.3     | 1,837.8   |

#### Katuna Hydraulic calculations continued

| Pine section     | Chainage | Section | Altitude | Pipe  |       | Dine     | Velocity | Friational | Cum      | Pasidual | HGL     |
|------------------|----------|---------|----------|-------|-------|----------|----------|------------|----------|----------|---------|
|                  | (m)      | (m)     | (m)      | (L/s) | Class | Dia (mm) | (m/s)    | loss (m)   | loss (m) | head (m) | (m)     |
| Reservoir        | 0        |         | 1845.7   | . ,   |       |          |          |            | , í      | 0        | 1845.7  |
| Tap 5            | 269      | 269.3   | 1821.2   | 3.8   | 6     | 110      | 0.5      | 0.7        | 0.7      | 23.8     | 1,845.0 |
| Tap 6            | 439      | 169.7   | 1820.8   | 3.6   | 6     | 110      | 0.5      | 0.4        | 1.1      | 23.8     | 1,844.6 |
| Tap 7            | 643      | 204.3   | 1821.0   | 3.4   | 6     | 90       | 0.7      | 1.3        | 2.4      | 22.3     | 1,843.3 |
| Tap 8            | 745      | 101.9   | 1821.0   | 3.2   | 6     | 90       | 0.6      | 0.6        | 3.0      | 21.7     | 1,842.7 |
| Tap 9            | 875      | 129.8   | 1818.0   | 3     | 6     | 90       | 0.6      | 0.7        | 3.7      | 24.0     | 1,842.0 |
| Tap 10           | 970      | 94.9    | 1819.0   | 2.8   | 6     | 90       | 0.6      | 0.4        | 4.1      | 22.6     | 1,841.6 |
| Tap 11           | 1,111    | 141.3   | 1820.0   | 2.6   | 6     | 90       | 0.5      | 0.6        | 4.7      | 21.0     | 1,841.0 |
| Tap 12           | 1,280    | 169.2   | 1819.3   | 2.4   | 6     | 90       | 0.5      | 0.6        | 5.3      | 21.1     | 1,840.4 |
| Jn to Tap 13 &14 | 1,497    | 216.3   | 1819.1   | 2.2   | 6     | 50       | 0.4      | 0.6        | 5.9      | 20.7     | 1,839.8 |
| Tap 15           | 1,645    | 148.1   | 1822.4   | 1.8   | 6     | 50       | 0.4      | 0.3        | 6.2      | 17.1     | 1,839.5 |
| Tap 16           | 1,771    | 126.2   | 1820.0   | 1.6   | 6     | 50       | 0.3      | 0.2        | 6.4      | 19.3     | 1,839.3 |
| Tap 17           | 1,905    | 134.4   | 1820.3   | 1.4   | 6     | 50       | 0.3      | 0.2        | 6.6      | 18.8     | 1,839.1 |
| Tap 18           | 2,451    | 545.7   | 1825.4   | 1.2   | 6     | 50       | 0.2      | 0.5        | 7.1      | 13.2     | 1,838.6 |
| PT               | 2,838    | 386.9   | 1822.2   | 1.0   | 6     | 50       | 0.2      | 0.3        | 7.4      | 16.1     | 1,838.3 |
| Tap 19           | 3,004    | 166.4   | 1822.3   | 1.0   | 6     | 50       | 0.2      | 0.1        | 7.5      | 15.9     | 1,838.2 |
| PT               | 3,232    | 227.1   | 1822.6   | 0.8   | 6     | 50       | 0.2      | 0.1        | 7.6      | 15.5     | 1,838.1 |
| Tap 20           | 3,619    | 387.5   | 1822.6   | 0.8   | 6     | 50       | 0.2      | 0.2        | 7.8      | 15.3     | 1,837.9 |
| Tap 21           | 3,845    | 226.2   | 1828.6   | 0.6   | 6     | 50       | 0.1      | 0.1        | 7.9      | 9.2      | 1,837.8 |
| Jn to Tap 22     | 3,981    | 136.2   | 1827.3   | 0.4   | 6     | 50       | 0.1      | 0.0        | 7.9      | 10.5     | 1,837.8 |
| PT               | 4,118    | 136.4   | 1830.1   | 0.2   | 6     | 50       | 0.0      | 0.0        | 7.9      | 7.7      | 1,837.8 |
| PT               | 4,189    | 71.4    | 1827.1   | 0.2   | 6     | 50       | 0.0      | 0.0        | 7.9      | 10.7     | 1,837.8 |
| PT               | 4,284    | 94.5    | 1830.4   | 0.2   | 6     | 50       | 0.0      | 0.0        | 7.9      | 7.3      | 1,837.8 |
| PT               | 4,420    | 136.4   | 1833.6   | 0.2   | 6     | 50       | 0.0      | 0.0        | 7.9      | 4.2      | 1,837.8 |
| Tap 24           | 4,547    | 127.2   | 1839.7   | 0.2   | 6     | 50       | 0.0      | 0.0        | 7.9      | -2.0     | 1,837.8 |

Note: The last two points on the above table would require that while implementing;

- Pipeline to be located at an elevation lower than the indicated.
- Dig deeper while excavating trenches for pipes.

# 10m<sup>3</sup> Detailed Report for Break-Pressure Tank

| Scenario Summary             |                        |
|------------------------------|------------------------|
| Scenario                     | design20               |
| Active Topology Alternative  | Base-Active Topology   |
| Physical Alternative         | Base-Physical          |
| Demand Alternative           | Base-Demand            |
| Initial Settings Alternative | Base-Initial Settings  |
| Operational Alternative      | Base-Operational       |
| Age Alternative              | Base-Age Alternative   |
| Constituent Alternative      | Base-Constituent       |
| Trace Alternative            | Base-Trace Alternative |
| Fire Flow Alternative        | Base-Fire Flow         |
| Capital Cost Alternative     | Base-Capital Cost      |
| Energy Cost Alternative      | Base-Energy Cost       |
| User Data Alternative        | Base-User Data         |

| Global Adjustments<br>Summary |               |           |               |
|-------------------------------|---------------|-----------|---------------|
| Demands Collection            | <none></none> | Roughness | <none></none> |

| Geometric Summary |        |   |           |        |   |
|-------------------|--------|---|-----------|--------|---|
| Х                 | 862.30 | m | Elevation | -93.62 | m |
| Υ                 | 0.00   | m | Zone      | Zone   |   |

| Operating Range Summary |        |   |               |      |   |
|-------------------------|--------|---|---------------|------|---|
| Maximum Elevation       | -90.62 | m | Maximum Level | 3.00 | m |
| Initial HGL             | -92.12 | m | Initial Level | 1.50 | m |
| Minimum Elevation       | -93.12 | m | Minimum Level | 0.50 | m |
| Base Elevation          | -93.62 | m |               |      |   |

| Storage         |          |    |                     |       |    |
|-----------------|----------|----|---------------------|-------|----|
| Section Type    | Constant |    | Circular Tank Shape | true  |    |
|                 | Area     |    |                     |       |    |
| Diameter        | 2.35     | m  | Average Area        | 4.3   | m² |
| Inactive Volume | 0.00     | m³ | Total Active Volume | 10.84 | m³ |

|           | Calculated Results Summary |            |          |              |                          |        |         |         |  |
|-----------|----------------------------|------------|----------|--------------|--------------------------|--------|---------|---------|--|
| Time (hr) | Calculated                 | Calculated | Pressure | Calculated   | Calculated               | Inflow | Outflow | Current |  |
|           | Hydraulic                  | Level (m)  | (m H2O)  | Percent Full | Volume (m <sup>3</sup> ) | (l/s)  | (l/s)   | Status  |  |
|           | Grade (m)                  |            |          | (%)          |                          |        |         |         |  |
| 0.00      | -92.12                     | 1.50       | 1.497    | 40.0         | 4.34                     | 14.311 | -14.311 | Filling |  |
| 0.13      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 1.00      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 2.00      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 3.00      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 4.00      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 5.00      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 6.00      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 7.00      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 8.00      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 9.00      | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 10.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 11.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 12.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 13.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 14.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 15.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 16.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 17.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 18.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 19.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 20.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 21.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 22.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 23.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |
| 24.00     | -90.62                     | 3.00       | 2.994    | 100.0        | 10.84                    | 0.000  | -0.000  | Full    |  |



# Detailed Report for Reservoir Tank (90m<sup>3</sup>)

| Scenario Summary             |                        |
|------------------------------|------------------------|
| Scenario                     | design20               |
| Active Topology Alternative  | Base-Active Topology   |
| Physical Alternative         | Base-Physical          |
| Demand Alternative           | Base-Demand            |
| Initial Settings Alternative | Base-Initial Settings  |
| Operational Alternative      | Base-Operational       |
| Age Alternative              | Base-Age Alternative   |
| Constituent Alternative      | Base-Constituent       |
| Trace Alternative            | Base-Trace Alternative |
| Fire Flow Alternative        | Base-Fire Flow         |
| Capital Cost Alternative     | Base-Capital Cost      |
| Energy Cost Alternative      | Base-Energy Cost       |
| User Data Alternative        | Base-User Data         |

| Geometric Summary |          |   |           |         |   |
|-------------------|----------|---|-----------|---------|---|
| Х                 | 5,588.72 | m | Elevation | -164.14 | m |
| Υ                 | 0.00     | m | Zone      | Zone    |   |

| Demand Summary |                 |                     |  |  |  |
|----------------|-----------------|---------------------|--|--|--|
| Туре           | Base Flow (I/s) | Pattern             |  |  |  |
| Demand         | 0.000           | Rural Growth Centre |  |  |  |

| Operating Range   |         |   |               |      |   |
|-------------------|---------|---|---------------|------|---|
| Summary           |         |   |               |      |   |
| Maximum Elevation | -164.34 | m | Maximum Level | 2.80 | m |
| Initial HGL       | -166.34 | m | Initial Level | 0.80 | m |
| Minimum Elevation | -166.64 | m | Minimum Level | 0.50 | m |
| Base Elevation    | -167.14 | m |               |      |   |

| Storage         |               |    |                        |       |    |
|-----------------|---------------|----|------------------------|-------|----|
| Section Type    | Constant Area |    | Circular Tank<br>Shape | true  |    |
| Diameter        | 7.10          | m  | Average Area           | 39.6  | m² |
| Inactive Volume | 0.00          | m³ | Total Active<br>Volume | 91.06 | m³ |

|       | Calculated Results Summary |           |          |            |           |        |         |          |  |
|-------|----------------------------|-----------|----------|------------|-----------|--------|---------|----------|--|
| Time  | Calculated                 | Calculate | Pressure | Calculated | Calculate | Inflow | Outflow | Current  |  |
| (hr)  | Hydraulic                  | d Level   | (m H2O)  | Percent    | d Volume  | (l/s)  | (l/s)   | Status   |  |
|       | Grade (m)                  | (m)       |          | Full (%)   | (m³)      |        |         |          |  |
| 0.00  | -166.34                    | 0.80      | 0.798    | 13.0       | 11.88     | 2.600  | -2.600  | Filling  |  |
| 0.13  | -166.31                    | 0.83      | 0.828    | 14.3       | 13.06     | 2.732  | -2.732  | Filling  |  |
| 1.00  | -166.09                    | 1.05      | 1.045    | 23.8       | 21.65     | 2.729  | -2.729  | Filling  |  |
| 2.00  | -165.84                    | 1.30      | 1.292    | 34.6       | 31.48     | 2.726  | -2.726  | Filling  |  |
| 3.00  | -165.60                    | 1.54      | 1.540    | 45.3       | 41.29     | 2.722  | -2.722  | Filling  |  |
| 4.00  | -165.35                    | 1.79      | 1.787    | 56.1       | 51.09     | 2.718  | -2.718  | Filling  |  |
| 5.00  | -165.10                    | 2.04      | 2.033    | 66.9       | 60.87     | 2.714  | -2.714  | Filling  |  |
| 6.00  | -164.86                    | 2.28      | 2.280    | 77.6       | 70.65     | 2.711  | -2.711  | Filling  |  |
| 7.00  | -164.61                    | 2.53      | 2.526    | 88.3       | 80.40     | -1.800 | 1.800   | Draining |  |
| 8.00  | -164.77                    | 2.37      | 2.362    | 81.2       | 73.92     | -1.798 | 1.798   | Draining |  |
| 9.00  | -164.94                    | 2.20      | 2.199    | 74.1       | 67.45     | -1.795 | 1.795   | Draining |  |
| 10.00 | -165.10                    | 2.04      | 2.036    | 67.0       | 60.99     | 0.142  | -0.142  | Filling  |  |
| 11.00 | -165.09                    | 2.05      | 2.049    | 67.5       | 61.50     | 0.142  | -0.142  | Filling  |  |
| 12.00 | -165.07                    | 2.07      | 2.062    | 68.1       | 62.01     | 0.142  | -0.142  | Filling  |  |
| 13.00 | -165.06                    | 2.08      | 2.075    | 68.7       | 62.52     | 0.141  | -0.141  | Filling  |  |
| 14.00 | -165.05                    | 2.09      | 2.088    | 69.2       | 63.03     | 0.141  | -0.141  | Filling  |  |
| 15.00 | -165.04                    | 2.10      | 2.101    | 69.8       | 63.54     | 0.141  | -0.141  | Filling  |  |
| 16.00 | -165.02                    | 2.12      | 2.113    | 70.3       | 64.04     | 0.141  | -0.141  | Filling  |  |
| 17.00 | -165.01                    | 2.13      | 2.126    | 70.9       | 64.55     | -4.049 | 4.049   | Draining |  |
| 18.00 | -165.38                    | 1.76      | 1.759    | 54.9       | 49.97     | -4.043 | 4.043   | Draining |  |
| 19.00 | -165.75                    | 1.39      | 1.392    | 38.9       | 35.42     | 2.724  | -2.724  | Filling  |  |
| 20.00 | -165.50                    | 1.64      | 1.639    | 49.7       | 45.22     | 2.720  | -2.720  | Filling  |  |
| 21.00 | -165.25                    | 1.89      | 1.886    | 60.4       | 55.02     | 2.717  | -2.717  | Filling  |  |
| 22.00 | -165.00                    | 2.14      | 2.132    | 71.2       | 64.80     | 2.713  | -2.713  | Filling  |  |
| 23.00 | -164.76                    | 2.38      | 2.378    | 81.9       | 74.56     | 2.709  | -2.709  | Filling  |  |
| 24.00 | -164.51                    | 2.63      | 2.624    | 92.6       | 84.31     | 2.705  | -2.705  | Filling  |  |



#### Scenario: design20

#### Extended Period analysis: 18.00 hr / 24.00

| Calculated 1 | <b>Results</b> : | Reservoir | Tank |
|--------------|------------------|-----------|------|
|--------------|------------------|-----------|------|

| Time | Calculated<br>Hydraulic | Calculated | Pressure | Calculated<br>Percent | Calculated<br>Volume | Inflow | Outflow | Current  |
|------|-------------------------|------------|----------|-----------------------|----------------------|--------|---------|----------|
| (hr) | Grade (m)               | Level (m)  | (m H2O)  | Full (%)              | (m³)                 | (l/s)  | (l/s)   | Status   |
| 0    | -166.34                 | 0.8        | 0.798    | 13                    | 11.88                | 2.6    | -2.6    | Filling  |
| 0.13 | -166.31                 | 0.83       | 0.828    | 14.3                  | 13.06                | 2.732  | -2.732  | Filling  |
| 1    | -166.09                 | 1.05       | 1.045    | 23.8                  | 21.65                | 2.729  | -2.729  | Filling  |
| 2    | -165.84                 | 1.3        | 1.292    | 34.6                  | 31.48                | 2.726  | -2.726  | Filling  |
| 3    | -165.6                  | 1.54       | 1.54     | 45.3                  | 41.29                | 2.722  | -2.722  | Filling  |
| 4    | -165.35                 | 1.79       | 1.787    | 56.1                  | 51.09                | 2.718  | -2.718  | Filling  |
| 5    | -165.1                  | 2.04       | 2.033    | 66.9                  | 60.87                | 2.714  | -2.714  | Filling  |
| 6    | -164.86                 | 2.28       | 2.28     | 77.6                  | 70.65                | 2.711  | -2.711  | Filling  |
| 7    | -164.61                 | 2.53       | 2.526    | 88.3                  | 80.4                 | -1.8   | 1.8     | Draining |
| 8    | -164.77                 | 2.37       | 2.362    | 81.2                  | 73.92                | -1.798 | 1.798   | Draining |
| 9    | -164.94                 | 2.2        | 2.199    | 74.1                  | 67.45                | -1.795 | 1.795   | Draining |
| 10   | -165.1                  | 2.04       | 2.036    | 67                    | 60.99                | 0.142  | -0.142  | Filling  |
| 11   | -165.09                 | 2.05       | 2.049    | 67.5                  | 61.5                 | 0.142  | -0.142  | Filling  |
| 12   | -165.07                 | 2.07       | 2.062    | 68.1                  | 62.01                | 0.142  | -0.142  | Filling  |
| 13   | -165.06                 | 2.08       | 2.075    | 68.7                  | 62.52                | 0.141  | -0.141  | Filling  |
| 14   | -165.05                 | 2.09       | 2.088    | 69.2                  | 63.03                | 0.141  | -0.141  | Filling  |
| 15   | -165.04                 | 2.1        | 2.101    | 69.8                  | 63.54                | 0.141  | -0.141  | Filling  |
| 16   | -165.02                 | 2.12       | 2.113    | 70.3                  | 64.04                | 0.141  | -0.141  | Filling  |
| 17   | -165.01                 | 2.13       | 2.126    | 70.9                  | 64.55                | -4.049 | 4.049   | Draining |
| 18   | -165.38                 | 1.76       | 1.759    | 54.9                  | 49.97                | -4.043 | 4.043   | Draining |
| 19   | -165.75                 | 1.39       | 1.392    | 38.9                  | 35.42                | 2.724  | -2.724  | Filling  |
| 20   | -165.5                  | 1.64       | 1.639    | 49.7                  | 45.22                | 2.72   | -2.72   | Filling  |
| 21   | -165.25                 | 1.89       | 1.886    | 60.4                  | 55.02                | 2.717  | -2.717  | Filling  |
| 22   | -165                    | 2.14       | 2.132    | 71.2                  | 64.8                 | 2.713  | -2.713  | Filling  |
| 23   | -164.76                 | 2.38       | 2.378    | 81.9                  | 74.56                | 2.709  | -2.709  | Filling  |
| 24   | -164.51                 | 2.63       | 2.624    | 92.6                  | 84.31                | 2.705  | -2.705  | Filling  |



## **Pressure VS Time at Tap Stands**












# O&M training guide

### SESSION: REVIEW OF PROJECT PHASES

### Background:

The project undergoes different phases in the target towns. The different phases have got major actors with different roles and responsibilities. Initial phases involve the community in planning and implementation, although the project has got a lot of input. However, the O & M phase is solely a responsibility of the benefiting community and there's need to reaffirm this stature to avoid the community over depending on the project in O & M.

Time: 30 minutes

#### Session Objectives:

- To emphasize the role of the user community in O & M of the constructed system.
- To assess participants knowledge of community obligation under O & M.

#### **Session Content:**

- Design phase: Consultant
  Construction phase Consultant/Contractor and community
- O & M: Community

#### Conclusion:

It is important for the future water user community to note that they are fully responsible for O & M of the system. Sustainability of the system depends on the management of the scheme by the community. If they manage the system poorly, it will lead to the collapse of the scheme.

# SESSION: OPERATION AND MAINTENANCE

# Background:

Sustainability of water and sanitation systems through proper and effective Operation and Maintenance has been recognized by government as a priority activity in order to safeguard infrastructure investments. The crucial role of good O&M practices in sustainability of water supplies and improved sanitation has been acknowledged. Most projects fail due to inappropriate O & M of schemes. This session aims at strengthening future user community's knowledge about good O & M practices to safeguard the sustainability of the constructions.

Time: 1 Hour 30 Minutes

#### Session Objectives:

- Understand the meaning of O & M.
- Identify common problems in O & M and means to guard against them.
- Know the importance of pooling funds for O & M.

#### Session Content:

#### What is Operation?

Operation is the actual or smooth running of a service or system. For example provision of fuel, starting the pump, control of water collection points, general mechanics, water treatment and hygienic handling.

#### What is Maintenance?

Maintenance deals with the activities that keep the system in proper working condition. It includes maintenance of all activities necessary to keep scheme in good condition as at the time of handover. It includes;

**Preventive maintenance** (Management, cost recovery and maintenance activities undertaken in response to pre-scheduled systematic inspection, repair, replacement, leading to continuity in service level, O & M spread overtime, extension of life span of equipment, users' satisfaction and willingness to pay.)

And

**Crisis maintenance** (Maintenance undertaken only in response to breakdowns and incase of public complaints, leading to poor service level, high O & M costs, faster wear and tear of equipments, and users' dissatisfaction.)

#### Problems associated with O & M

- Lack of skilled personnel to operate the scheme effectively
- Leakage along the pipeline, at the tanks, valves, etc
- Un-serviced meters and non-functional taps
- Poor willngness to contribute user fees for O & M.
- Accessibility and availability of spare parts.
- Vandalism of assets

- Sustainability of good sanitation levels and water contamination.
- Lack of coordination between water users and water committees / Boards
- Lack of political will
- No distinction regarding different tasks and actors involved.
- Poor knowledge of financial principles and no bookkeeping.
- Identification of O&M activities
- Poor awareness of future needs
- No links between cost estimation and cost recovery
- Poor system of collection, unrealistic / inappropriate tariff structure

#### Improving performance requires;

- Proper management of water supply facilities
- Adequate data on O&M
- Sufficient and efficient use of funds
- Appropriate system design
- High profile of O&M
- Adequate policies, legal framework and overlapping responsibilities
- Political support
- Identification of O&M responsibility bearers
- Emphasis on cost recovery

#### Importance of cost recovery

- Available public funds are inadequate to meet O & M thus community contribution in form of users fees.
- State intervention and control may be ineffective and inefficient.
- Communities are not given chance to choose say appropriate technology due to subsidized services.
- Payments increase sense of ownership
- User payments increase quality and standards of service.

#### **Conclusion:**

In order to have sustainable and functional schemes, emphasis has to be put on the important aspects that are deemed necessary in O & M. Efficiency and effectiveness of O&M lead to sustainability of Water supply and sanitation services. The type of mode applied for water and sanitation schemes management determines the efficiency and effectiveness of Operation and Maintenance.

# SESSION: MANAGEMENT OF THE SCHEME

# Background:

Community management aims at empowering and equipping communities with skills to own and control their own systems. As owners they have the responsibilities and decision-making power and hold the future sustainability of the scheme. Sustainability of the constructed system depends on the quality of O & M. Failure of most constructed systems has been attributed to inappropriate O & M of schemes. The root of this state of affairs varies from political to social, technical and economic considerations, among which problems of inadequate management have been identified as a constraint. This session is meant to enlighten community about the management system of the scheme to be handed over.

# Time: 1 Hour 30 Minutes

# Session Objectives:

By the end of the session participants will be able to;

- Know the management model, actors and reporting structure of the scheme.
- Gain knowledge about the selection of WSSB and SO.

# **Session Content:**

# Hand Over and Management of System

The completed Scheme is handed over to the Sub County council as the relevant authority. The Sub County council is required to hand over the management of the scheme to a five-member committee (the Water Supply and Sanitation Board). The WSSB contracts out the day-to-day running of the scheme to a private person; the Scheme Operator. The SO will need to employ people to assist in the delivery of services (e.g. tap attendants at the tap stands) but these persons are solely under him and not under the WSSB.



- The minister appoints a water authority.
- Authority responsible for management of assets, water and sanitation services.
- Authority does not own assets.

# Water Supply and Sanitation Board (WSSB)

The board is composed of five persons;

- i) Three persons drawn from the water users
- ii) The Sub county chief
- iii) LC III Councilor responsible for water and sanitation

# **Formation of the WSSB:**

The Sub county Chief and the councilor on the WSSB represent their positions, and not individuals. The LC III council appoints the three persons on the WSSB, with the following observations;

- The selected person must be a person from within the water area (water user).
- The WSSB must have at least 1 woman.
- The selected person must be hardworking, honest and trust worthy

# **Scheme Operator (SO)**

# Selecting the Scheme Operator:

The WSSB holds the responsibility of selecting a Scheme Operator. The selection process must be transparent and should accommodate competition. The following should be considered while selecting a SO;

- Ability to read and write English.
- Knowledge about the management system of the scheme (Attended this training).
- Ability to keep proper records
- Preferably from the water area.
- Innovative, hardworking and presentable.

# Conclusion:

It is vital to select and appoint competent persons in the management of the scheme if sustainability is to be achieved.

# SESSION: RESPONSIBILITIES OF ACTORS IN SCHEME MANAGEMENT.

# Background:

Role differentiation is an essential factor for successful O & M of systems. The actors identified in the previous session need to understand clearly their contribution towards management of the constructed system thus contributing to the sustainability of the systems.

Time:2 Hours

#### Session Objectives:

• To create awareness on actors roles and responsibilities.

#### **Session Content:**

# **Responsibilities of the Council / Sub County**

- Maintain assets of the scheme
- Appoint a Water Supply and Sanitation Board
- Supervise the WSSB in the management of the scheme.
- Carry out internal audits of the scheme.
- Assist the WSSB to deal with persons that vandalize the scheme and to resolve any conflicts pertaining to the scheme.
- Ensure smooth running of the scheme.
- Ensure sanitation standards are maintained in the community.
- Mobilise extension staff for continued sensitization of the community on water and sanitation.

#### **Responsibilities of the WSSB**

- Plan for water and sanitation scheme activities.
- Selecting, supervising and paying the Scheme Operator.
- Approve private connection applications before they are submitted to SWUWS for technical approval.
- Approve budgets and all expenditure of the scheme.
- Supervise sanitation activities.
- Sensitizing water users on water and sanitation.

# **Responsibilities of the Scheme Operator**

- 1. Ensure smooth running of the scheme and constant supply of water to user community.
- 2. Maintain all assets of the scheme and keep inventory.
- 3. Maintain proper records of the scheme.
- 4. Smooth collection of funds for O & M of the scheme.
- 5. Supervision of sanitation activities and safe water chain sensitization.
- 6. Keep and maintain office for the scheme.
- 7. Responsible for procurements of scheme.
- 8. Make scheme projections about income and expenditure.

# **Scheme Operator Tasks**

- 1. Regularly monitor scheme constructions to detect faults.
- 2. Carry out repairs timely.
- 3. Select scheme attendants and supervise them.
- 4. Update inventory of scheme.
- 5. Make entries in books of accounts regularly.
- 6. Prepare accounts documents for the scheme.
- 7. Take meter readings of the scheme regularly and collect money from Attendants.
- 8. Collect revenue from water sales (public tap stands & private connections).
- 9. Sensitize Tap Attendants about safe water chain.
- 10. Wash tanks, clean office, and sanitation facilities.
- 11. Procure spares, tools, and equipment of scheme.
- 12. Attend to impromptu visitors of the scheme.
- 13. Receive, complaints, suggestions from the users and forward them to WSSB for decision-making.
- 14. Carry out preventive maintenance of scheme.
- 15. Source fenced, grass trimmed, tap stands fenced.
- 16. Prepare business plan and budgets of the scheme.

# Responsibilities of a tap attendant

- Collect money from the water users at the taps and hand it over to the SO.
- Ensure tap environment is clean and water collection containers are clean.
- Record meter readings at the beginning and end of each day.
- Sensitize users about proper water handling.

# Conclusion:

All scheme actors in O & M must carry out their obligations diligently to ensure sustainability of the constructed systems.

Construction cost estimates

Drawings (schematic layout, profiles, hydraulic structures).