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Abstract

Engineering decision making could range from simple problems to selecting the site
for a major dam. In the same time, hydrological models became essential tool in every
hydrological study or decision support system. These models by definition are
simplifications of reality. Nevertheless, in most of the cases models' parameters and
input data cannot be obtained directly and accurately enough in the field. Therefore,
uncertainty analysis becomes unavoidable in any hydrological models.

The aim of this study was to explore different calibration and uncertainty analysis
methods of hydrologic models. And develop necessary codes to link standard
modeling software with external calibration and uncertainty systems. And apply new
uncertainty analysis tool based on novel method to estimate the uncertainty using
machine learning techniques. Finally, compare performances of these calibration and
uncertainty analysis techniques on selected case study.

The procedures plan through this study starts by building a distributed hydrological
model of the Nzoia River in Kenya on SWAT software. Then, calibration process
starts which include apply many calibration systems and link them with SWAT. After
that the uncertainty analysis of that model will be applied using different methods.
Last step should be comparing the applied methods and these results.
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1 Introduction

Decision makers in water sectors depend a lot on hydrological models. So the more
we are certain in our hydrological models' results the more we make good decisions.
However, most of hydrological models available today focus on models construction
and calibration but the efforts that directed to uncertainty analysis are very limited.
Therefore, the research question of this study is "How far we are certain in our
hydrological models results?" Therefore, this study compares different uncertainty
analysis techniques and applies a novel technique in uncertainty analysis.

This thesis consists of seven chapters. The first chapter is a brief overview to some
important definitions; also it contains the research objectives and methodology of the
work. Then the second chapter is a literature review to different calibration and
uncertainty analysis techniques. After that in chapter three, there are some
descriptions for hydrological modeling software and different optimization and
uncertainty analysis tools. The model setup comes in fourth chapter; in this chapter
detailed description for the available data and steps to build the case study model. The
applications of calibration methods are described in fifth chapter. While analyzing the
uncertainty results are in chapter six. Conclusions and recommendations came in
chapter eight. After that, there are two appendices, the first one is a manual describing
how to link external analysis codes with watershed modeling tool. Appendix 2
contains Matlab codes, which used through the thesis.

1.1 Background on hydrological models

Hydrological models became essential tool in every hydrological study nowadays.
These models by definition are simplifications of reality and it provides a clear
understand to the complex real situations because any hydrological system whatever it
is small, is very complicated with the objective of explanation or prediction, see
(Figure 1-1). Nevertheless, in most of the cases models parameters cannot be obtained
directly in the watershed. Therefore, parameters assumption is necessary and it
becomes impossible to have a model free of errors.
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Modeling includes studying the system, formulating its behavior, collecting and
preparing data, building the model, testing it, using it, interpreting the results, and,
possibly, iterating the entire procedure. It is very important when applying models to
keep in mind that there is no perfect hydrological model which we could expect
output as the same as the natural. Therefore, in the hydrological modeling progresses
the modelers are looking for appropriate models. This means the development or
selection of a model with a degree of sophistication that reflects the actual needs for
modeling results. It means a parameter parsimonious model with a discrimination in
space and time that ensures a realistic simulation or prediction of the requested

variables.
¢—{ Hydrological modeling tools }_l
Mathematical methods | Statistical methods
models v

| Data driven methods | léiir:f;ff; E;rrllzllszSS

Time series analysis
Stochastic processes
probabilistic analysis
Uncertainty analysis

Neural networks
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M5 model trees
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Ordinary differential equations
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Integral differential equations
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Finite difference

Finite element

Boundary element
Boundary fitted coordinates

Figure 1-2 Hydrological models classification

There is a variety of classification methods of the hydrological models. One
classification divides the hydrological models into lumped models and distributed
models. Where lumped models (easy, fast and few data needed) deal with a catchment
as a single unit without any consideration of the spatial patterns of the processes and
characteristics within the catchment while the distributed models (difficult, slow and
many data needed) attempt to take account of the spatial patterns of hydrological
response within a catchment area. Another classification divides the models into
deterministic and stochastic models. Where the deterministic models are these
models, which take input sequence, produce a single prediction of all its output
variables. Figure 1-3 displays hydrological model classifications (Beven, 2005).

Deterministic hydrological models occupy majority of model applications in
hydrology until now. More attention should direct to the stochastic models that
represents the model inputs in probability. This principle allows study uncertainty in
the inputs or parameterizations or outputs, such that a given input sequence will
produce an uncertain prediction of the output variables. Even though the uncertainties
associated with such predictions are now widely appreciated, while another



classification method based on processes described based on physical laws (physically
based models) conversely collected data approach (data-driven models).

1.1.1 Knowledge-driven modeling

Knowledge-driven modeling or physically-based modeling approach is based on our
understanding (knowledge) of the physical behavior of the hydrological processes
which control watershed response and use physically based equations to describe
these processes. SWAT, HSPF, MIKE-SHE, AGNPS etc. are examples of
Knowledge-driven modeling(Abbott and Refsgaard, 1996). SWAT will be described
in details in section 3.1.

1.1.2 Data-driven modeling (DDM)

In contrast to Knowledge-driven modeling, Data-driven approaches needs limited
knowledge of the physical characteristics of the watershed hydrological processes. It
based on mathematical equations assessed not from our understanding of the physical
process basin but from analysis of relationship between input and output discharges,
the simplest example is linear regression analysis. There are many benefits of using
data-driven models like, it allow for solving numerical prediction problems,
reconstructing highly nonlinear functions, performing classification, grouping of data
and building rule-based systems. Therefore, during the last decade the data-driven
models became more and more common(Solomatine and Ostfeld, 2008).

In (Solomatine, 2002) he mentioned that machine learning is the main source of
methods of data driven models. In fact machine learning is a subarea of Artificial
intelligence (AI). (Al) is both the intelligence of machines and the branch of computer
science which aims to write computer programs that can solve problems creatively; "
hopefully to imitate intelligence of human brain".

1.1.2.1 Machine learning

Machine learning means giving computers ability to understand or to learn. It can be
also defined as an area of artificial intelligence concerned with the study of computer
algorithms that improve automatically through experience.

Due to data driven models usually applied when there is no clean understandable
relation between (system input and output). Machine learning uses the available data
to discover the dependency between these input/outputs. Then it will be able to
predict the future systems outputs from known input data (Solomatine, 2002)

Learning process could be classification, clustering, regression and association
methods. This process tries to minimize the difference between system observed data
and its simulations.

1.1.2.2 Artificial neural networks (ANNs)

ANN is a very common application of machine learning to model complex
hydrological watersheds. It is becoming more and more popular in the water resources
community. ANN can be defined as a mathematical structure that identifies nonlinear



relationships between input and output model variables. The traditional way of
implementing a neural network is to train it on measured input and output data for the
system under studying, and then verified the ANN in terms of its ability to reproduce
another set of data for the same system (Lobbrecht, et al., 2005).

ANN consists of a large number of measured data (samples) that are called neurons.
These artificial neurons are devices which can receive many inputs and produce one
output. The neuron in the training modem, it can be trained to fire (or not), for
particular input patterns. While in testing mode, when a taught input pattern is
detected at the input, its associated output becomes the current output. If the input
sample does not belong to any of the trained inputs, ANN should follow some
procedure to decide to fire or not (Price, et al., 1998).
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Figure 1-3 Simple example of ANN

1.2 Background on uncertainty of hydrological models

Decision support systems are used extensively in water management. Since the
decision is made under uncertainty, it is also necessary to taking uncertainty of
hydrological models into account.

The uncertainty in hydrological models may come from simplifications in the
conceptual model. Processes occur in the watershed but not included in the model
(wind erosion). Processes that are included in the model but their occurrences in the
watershed are unknown to the modeler or unaccountable like irrigation systems.
Process not known to the modeler and not included in the model either like
constructions of roads. Errors in the input variables like rainfall and temperature or
errors in the very measurements we use to calibrate the model.

Uncertainty analysis methods can be classified according to different approaches. One
of the most important classifications is according to the reason of uncertainty. For
example if it caused by inherently random (stochastic) behavior, the uncertainty called
aleatoric uncertainty and this type is described with the stochastic models. On the



other side, if the uncertainty is a result by a lack of knowledge then it referred as
epistemic uncertainty, which include fuzziness and intervals.

Well uncertainty analysis provides many benefits like; It is more honest to express the
degree of certitude in hydrological models output. It enables to set risk-based criteria
for flood warnings and emergency response. It provides the necessary information for
making rational decisions, which enables the users to take risk explicitly into account.
It provides additional economic benefits because of the forecasts to every rational
decision maker and thereby to society as a whole. It helps decision-makers to use their
own judgment more appropriately for decision making through the information that
regarded by uncertainty (for example the confidence intervals, the probability of
exceedance of certain levels, etc.)(Blasone and Rosbjerg).

1.3 Research questions
1. How can we asses the uncertainty of hydrological models?
2. How applicable are the known uncertainty methods in hydrological modeling?

3. How do these methods compare?

1.4 Research objectives

1. Understand different techniques for sensitivity and uncertainty analysis, of
hydrological models and their calubration.

2. ldentify and analyze uncertainty through of a model using different techniques
including a novel method based on machine learning (UNEEC)

3. Develop necessary computer codes to link uncertainty analysis tools with a
distributed hydrological model and to validate them by application to real-
world problems.

4. Compare the performances of uncertainty analysis techniques in the case study
at Nzoia River.

1.5 Methodology

Througt this study many software used for modelling or the uncertainty analysis or
even to link the different used software. First of all, ArcGis used for catchment
characteristics discovering, mapping and preseniting. Soil and Water Assessment
Tool (SWAT) used for Nzoia catchment modelling. Matlab and mocrosoft excel also
esed in data discribtive statistics and model results analysis.

The research methodology will follow the following major steps to achieve the
objectives of the research:

1. Reviewing of literature
2. Build distributed hydrological model (SWAT)

3. develop necessary codes to link the case study model with external calibration
and uncertainty systems



Sensitivity analysis for model parameters
Model calibration with different techniques
Model validation

Apply different uncertainly analysis techniques

® 2NN s

Compare and analysis the results from the applied calibration and uncertainty
analysis techniques

9. Apply new non-parametric methods UNEEC (Uncertainty Estimation based
on local Errors and Clustering) for total uncertainty analysis

10. Reporting writing.



2 Model calibration and uncertainty analysis techniques

Parameters that used in hydrological models are not measurable in the field in most of
the cases. Therefore, parameters estimation is essential step in almost every
hydrological model. Process of adjusting the model parameters estimation to match
the model behavior to the observed behavior of the watershed is called model
calibration. Getting more experience in hydrological model calibration is main
objective of this study as mentioned in Research objectives. Therefore, different
calibration techniques studied in this thesis and applied on the case study. In the next
paragraphs, there are brief descriptions to objective functions.

2.1 Introduction

Aim of calibration process is to find the model parameters values that minimize the
difference between model and the reality. Therefore, researchers developed based on
statistical equations some different statistical regression and model fitting techniques
to measure how the simulated outputs fit the observed data. These equations are called
objective function. Moreover, it has different values according to the selected set of
parameters. Figure 2-2displays surfaces describe the objective function in parameter
space, which is called “response surface”. Therefore, parameter optimization could be
defined as the process of searching within response surface inside the allowable
parameter ranges to achieve the minimum or maximum -as appropriate- objective
function value(Singh and Frevert, 2002).

Figure 2-2 shows response surface complexity increasing when function's complexity
raise from one variable (A) into two variables (B). Therefore, selecting calibration
technique depends on the complexity of model, which depends on number of
parameters to be optimized. Optimizing response surface that have single
minima/maxima are much easier than those surfaces that have multi minima/maxima.

Figure 2-1 Single & Multi objective functions



In addition, rainfall runoff models may have ten parameters (response surface of ten
dimensions) which give an idea of how the calibration process become very
complicated with distributed hydrological models.

Optimization methods have three main classes (McCuen and Snyder, 1986). First
class is the analytical optimization techniques, this type utilizing analytical calculus to
derive parameters values. It provides direct solutions and gives exact solution if exist
but it is practical only in case of simple models. The Second technique is the
numerical optimization, which evaluate the parameters numerically as by using finite
difference scheme. This type is more suitable in models that are more complex and
adding parameters ranges constrains is quite easy. However, it needs a considerable
number of iteration so it is considered time-consuming technique furthermore, the
answers are usually not exact and it is necessary to estimate initial values for the
parameters. Third one is subjective optimization techniques. This type is a trial and
error process that depends mainly on the user experience. In addition, it is most often
used with very complex models that involve many unknown.

2.2 Sensitivity analysis

Sensitivity analysis means a method to determine how the hydrological models
outcomes are sensitive to its parameters. Furthermore, most of hydrological models
now a day became very complex and over parameterised. Therefore, the sensitivity
analysis is essential in most of hydrological models. In regards to reduce the number
of parameters that calibrated and hence it reduces a lot the modelling time.

221 Manual sampling

It is the most simple sensitivity analysis method. It starts to change parameters values
and check the effect on the model results. Then mark the parameters that cause
significant changes to the total results with small variation in its values are sensitive.
This method is applicable for the simple models that have few parameters like simple
lumped models. But the sensitivity analysis processes become too complex to done
manually. Because of that, there are now many automatic techniques impeded in the
hydrological models packages to do study the hydrological models. In fact, those
techniques uses the same idea by running the model several times with different sets
of parameters values then the program calculates the degree of final results changing.
Then the analysis sorts the used parameters according to that sensitivity.

2.2.2 Latin hypercube sampling

The statistical method of Latin hypercube sampling (LHS) was developed to generate
sets of model parameter values with specific distribution. And it is often applied in
uncertainty analysis. Figure 2-7 is an example of two parameters Latin square and it
shows LHS principle which starts by determine each parameter domain and divide it
into reasonable number then generate only one sample in each row and each column
(van Griensven, 2005).
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Figure 2-3 Latin hypercube sampling intervals in case of parameters values that
follow normal probability distribution

2.2.3 One factor at a time algorithm

The sensitivity analysis method that implemented in SWAT depends on joining Latin
hypercube sampling with One-factor-At-a-Time approach to form what known by
(LH-OAT). LH sampling depends on the principals of Mont Carlo (MC) sampling but
it eliminates the most deficit thing in MC by stratifying the parameters ranges into a
reasonable number of sub-ranges. That allows efficient and full parameters
representing without need to big number of runs as MC. that is because the statistical
origin of LH depends on Latin square, which is a square grids that contains one and
only one sample in each row and each column.

The LH technique main steps could be summarizing as the following. First, we
assume the probabilistic distribution for studied parameters and its expected range of
values. Then we stratified this range into N sub ranges with equal probability of
occurrence (1/N) where N equals to the number of analysis runs. In figure 17, for
example, the parameter probabilistic distribution assumed as normal distribution and
it stratified into 12-sub range. Therefore, when the program will run to analysis model
sensitivity to each parameter it will run 12 times with different generated values for



this parameter. The second part of (LH-OAT) technique is the One-factor-At-a-Time
sampling approach. When this approach makes samples it changes only one parameter
each time, so it gains information about one parameter in each run. Therefore, the
model sensitivity to different parameters can unambiguously attribute to the input
parameter changes. However, this method has disadvantage that it is not easy to study
the interaction parameters. The two techniques (LH & OAT) are joining by taking the
LH samples as initial values to QAT sampling technique.

In Table 2-1, there is an example to how OAT technique works. It starts by assuming
initial values for all the parameters — from LH — and calculate the model response
according to these values. Then it starts to change all the parameter values one each
time — as in row 2 it only changed cn2 value - and calculate the model response
according to each trial. In each trial, it compares the model response with the one that
got from the previous trial. If the model response or the objective function developed
after a change that means it was a right step and the model is sensitive to this
parameter.

Table 2-1 OAT explanation example

Trial Sample parameters Model

CN2 sol_alb gwqmn Sol k gutput

1 Al Bl Cl D1 50
2 A2 B1 Cl Dl 80
3 A2 B2 Cl Dl 60
4 A2 B1 C2 Dl 70
5 A2 B1 Cl D2 90

Most sensitive parameters are (CN2 and Sol _k)

2.3 Objective functions and goodness of fit estimation

Objective function is a function that measures how model output fits with the
observed flow data. Goodness-of-fit statistics studies these functions; it also provides
some measures of the agreement between a set of sample observations and the
corresponding values predicted from some model of interest. Some of these equations
are listed in the following table.
Where in all previous equations:

Qobs observed flow time series

Q.im simulated flow time series

N number of flow data in the time series
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Table 2-2 Some common objective functions

Objective
function

Method Equation

notes

Mean square
error (MSE)

| )2
o z obs szm
n-

Zero means perfect
model

Root mean

square error
(RMSE)

n

)2
Z obs szm
1

S [ =

Zero means perfect
model

mean absolute 1 <& Zero means perfect
error (MAE) — Z ‘ obs stm model

n-
Sum of the n 5 The smaller is, the
squares of the Z Dbs s,m ) better.
residuals (SSQ) 1
sum of the n the time of occurrence

squares of the
residuals after
ranking (SSQR)

)2
Z obs szm
1

of observation of
simulation is not
accounted

Correlation
Coefficient (r)

ZQobr ’ szm - éobr .éwm

130, -n0, /30 -n0,,

R indicates the degree
of linear relationship
between observed and
simulated flow. It lies
between -1 and +1.

+1 indicates perfect
linear relationship

Coefficient of
determination
(r2)

onbs Qi _n’éobs 'ésim
\/z Qobsz _n’éobsz \/zQsztm _n’ésimz

it is simply the square
of the correlation
coefficient, r.
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The selected objective functions in modeling software used in this study are, Sum of
the squares of the residuals (SSQ) and the sum of the squares of the difference of the
measured and simulated values after ranking (SSQR).

to measure the goodness-of-fit between observed and simulated stream discharge,
SWAT uses the Nash-Sutcliffe coefficient(Nash and Sutcliffe, 1970). The following
equation summarize this method

0, -0.f

( )Z Equation 2-1

v
I|
szM»

.,
1l
L

Where

~

O,  Observed discharge at time t
Qt

»  Modeled discharge at time t, and

o, Average observed discharge.

Nash-Sutcliffe efficiencies E ranges from -oo to one, E=one corresponds to a perfect
match of modeled discharge to the observed data. An efficiency of zero (E=0)
indicates that the model predictions are as accurate as the mean of the observed data,
whereas an efficiency less than zero (-co<E<0) occurs when the observed mean is a
better predictor than the model.

2.4 Searching methods

Model calibration is typically a form of optimization searching process. It starts by
assuming an initial set pf variables and calculate its corresponding objective function
value. Then repeat this processes many times after changing parameters values
assumption tell get the most proper parameter value. Optimization strategies are
distinguished based on its way of changing parameter values from iteration to the
next.

Model optimization is to search within the allowed ranges of parameters values in
order to determine the best solution. Best solution is the parameters combination that
optimizes the selected objective function. Optimization searching strategy is changing
according to model level of complexity. These strategies are classified into local
search methods and global search methods. The following paragraphs have some
detailed information about these methods.

2.4.1 Local search method

Local search methods are used for unimodal functions (functions that have only one
maximum or minimum within allowable parameters ranges). The searching process
starts by initial guess of a set of parameters and calculate the corresponding objective
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function to stand at an initial on the response surface.
Then change parameters values slightly to move on
the response surface from point to its neighbor. Then,
repeat these searching steps tell find a set of
parameters that produce optimum value in the
response surface.

The main questions while moving on the response
surface are a) which direction should we move. b)
How far should move in that direction. ¢) How to decide  Figure 2-4

that no more better points on the response surface .based

on answers of these questions strategies, local search methods can be classified.
Direct search methods and gradient search methods are the main classes of local
search optimization. The difference between these two methods that the first one takes
decision based on objective function values only while the second method uses both
of objective function values and gradient.

2.4.1.1 Direct search methods

The general strategy of direct search methods is to start at initial point and calculate
the objective function values at different direction and step sizes, then selesct one
which has best optimization then repeat it tell achieve point where searching process
will not be able to find better points any more.

Examples of direct search methods are the Nelder-Mead Simplex method, Hooke and
Jeeves' pattern search, the box method, and Dennis and Torczon's parallel direct
search algorithm. In next section, there is a description to the first method (simplex
method) where it is the theoretical base of Parasol technique, which implemented in
SWAT and applied in this thesis.

24.1.1.1 Simplex method

Simplex method also called Nelder-Mead method or downhill simplex method. It uses
only function values, without calculate the derivatives. Simplex is the geometrical
figure that consists of N+1 vertices in N dimensions. For example, in one dimension
simplex is line, in two dimensions it is a triangle and in three dimensions simplex is a
tetrahedron.

First step in this method is to calculate function values at random (N+1) points or
vertex. Then it identifies vertices, and ranks them according to its objective function
values. Next step is to calculate simplex centroid after excluding the worst vertex.
After that, it moves the worst vertex to the opposite side through simplex centoid, the
distance between old vertex point and the reflected point may be equally on both sides
of centroid , expanded or even shrinkage, shows some of these alternatives, where at
vertex (W) the worst function value. R = reflection, E = expansion, C+ = positive
contraction and C- = negative contraction (Figure 2-6).

13



Figure 2-5 Worst vertex movements options in simplex method

Furthermore (Figure 2-7) shows a method for finding the optimum values of 3-D
function, where a 2-D simplex proceeds by reflection, contraction, expansion or
shrinking along the surface. Calculating how much the function developed each
iteration determine when iterations should be stopped. (Gershenfeld, 1999)

2.4.1.2 Gradient search methods

S0l S W b
g

10 Contract
Ferminote Simplex

Gradient search methods don't use only function values but it also use function
gradients to find the optimal direction of search.. Steepest descent, continuous
descent, Newton raphson and polack ribiere are all types of gradient search methods.

The next equation is the base of most gradient methods.
0,,=0,-p-A-VO, Equation 2-2
Where

0,,, Initial parameter vector

0O, New parameter vector
P Step size parameter
A Square matrix

VO, Function gradient matrix
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2.4.2 Global search methods

Global optimization methods are those algorithms, which tries to optimize multi-
modal functions. These optimization methods are classified into deterministic and
probabilistic approaches; In addition, there is a combination of them. The first
approach is used when there is a clear relation between model parameters and model
output, which is very rare case in real problems, therefore, most of the applicable
methods are stochastic or a combination of deterministic and stochastic methods.

(Solomatine, 1995) grouped the global optimization methods into five groups, first
one contains the space covering techniques; second contains the random search
methods; third group is for the multistart methods which based on multiple local
searches; genetic algorithms are the fourth group; all the other methods are considered
in the fifth group.

2.4.2.1 Space covering technique

The search space is divided into number of subsets and the objective function is
evaluated in each sunset. Then the parameter value which corresponding to the best
objective function will be selected. in case of use the previously selected parameters
values and its corresponding objective functions values to choose the next parameter
value the algorithm is called a sequential covering algorithm (Solomatine, 1995).

2.4.2.2 Random search methods

(Solomatine, 1995) mentioned three searching subgroups under random search
techniques. These are pure random search methods, adaptive random search and
controlled random search.

The pure random search (also called Monte Carlo search) is the simplest stochastic
global optimization method. It generates model parameters sets assuming it have
uniform distribution and calculates its objective functions, after net a stopping criteria
it assumes the best objective function as the global optimum value. The main
disadvantage of pure random search is that it needs large number of function
evaluations; this number also grows exponentially with number of parameter increase.
s0, it was improved to use the known objective function values into consideration
which gives parameters generation a sequential manner, this developed method called
(adaptive random search) (Solomatine, et al., 1999).

2.4.2.3 Multistart local search methods

These methods came from develop the pure random search methods. It uses each
generated point as a start point of a local optimization procedure. Then it applies local
search procedure several times. The best found points of local search are most
probable to have the global optimizer.

Multistart searching is repetition of two main steps tell achieving a stopping criterion.
The first step is to generate a random points within a given accepted parameter ranges
then use these points as a start points for local search process. After achieving the
stopping criterion, the best local search is taken as a global optimum. Multistart is also
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not efficient where many start points can lead to the same local optimum. (Arora,
2004)

2.4.2.4 The shuffled complex evolution algorithm (SCE-UA)

It is a global optimization method based on the use of multiple simplexes. SCE-UA
developed originally as part of a doctoral dissertation in University of Arizona
(Duan). SCE-UA is as an effective, robust, flexible and efficient algorithm because
(a) it is a combination of deterministic and probabilistic approaches. (b) It evolutes
model parameters values in direction of global optimization. (c) It is a Competitive
evolution algorithm. (d) It shuffled the complexes(Singh, 1995).

SCE-UA uses two methods to select good simulations. First method is y2 statistics, it
looks for model simulations that make objective functions lies around the optimum
value within selected confidence interval. Bayesian statistics is the second method,
which defines high probability regions.

First step of SCE-UA, after user define parameters probability distributions or assume
it uniform, is to sample points randomly within the parameter space and compute the
function value or criterion at each point. Second step, is to sort sampled points
according to criterion value from best to worst. Third step is partitioning into
complexes, if user wants to have N complexes, ranked data should partition into N
parts and each complex should has points from every part to be a mix of good/bad
points as the work idea of simplex method. Fourth step is to evolve each complex
independently to get the best points in each complex. Fifth step is to shuffle the
complexes, in order to get the global optimum and to eliminate falling into local
optimum it remix the complexes by shuffling some points from each complex to the
others. Last step is to check if the searching process satisfied the convergence criteria,
if not, a new random population will be generated and SCE-UA will repeat the whole
steps (Duan, et al., 1992).

point O.F.
rank

best

L1 | worst
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2.5 Calibration techniques

For real case studies calibration should done using global searching algorithms. Four
global searching algorithms will discuss in the following sections in addition to quick
look at manual calibration. The well-calibrated model has similar overall water
balance as the observed flow. In addition, it should have similar shape of the
hydrograph, peak flows and low flows. In addition, model prediction should have low
uncertainty and negligible bias.

2.5.1 Manual calibration

For the manual calibration, it is very difficult in this case because the model as a
SWAT models has over three hundreds of parameters and the watershed subdivided
into 164 hydrological response units.

2.5.2 Parameter solution (PARASOL)

PARASOL is an acronym for (Parameter Solutions method), it is a model calibration
and uncertainty analysis method. It is a multi-objective calibration based on adapting
the shuffled complex evolution algorithm SCE-UA (described in section 2.4.2.4) for
multi-objectives problems and for large number of parameters; it minimizes the global
optimization criterion (described in section 2.3.2.32.5.2.1below). PARASOL starts by
model calibration then it uses the behavioral simulations for uncertainty analysis.

2.5.2.1 Multi-objective optimization

Most realistic optimization problems, particularly distributed hydrological models,
which may need to optimize water discharge, sediment transport, nutrient and
pesticide movement. Therefore, it requires simultaneously optimization of more than
one objective function. Therefore, instead of using SSQ’s or SSQR’s (section 0)
SWAT utilizes a method based on the Bayesian theory, which assumes normal
distribution of the residuals. It combines several SSQ’s or SSQR’s into Global
Optimization Criterion (GOC). In this method, the sum of the squares of the residuals
gets weights that are equal to the number of observations divided by the minimum.
The following equation explain this method.

n *
GOC = Z SSQ. * nobs,
= S50 Equation 2 5
Where:

SSQ; the sum of the squares of the residuals for optimized object i.

nobs; the number of observations for optimized object i.

SSQi M~ the sum of the squares at the optimum for optimized object i.
The probability of given parameter set to be the optimum solution is related to the

GOC according to Equation 2-6
P(@1Y, )< exp[-GOC]

obs

Equation 2 6
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2.5.3 Adaptive cluster covering (ACCO)

ACCO approach clusters a set of points into subregions with reduction of samples. It
applies clustering only once, and then it covers the subregions. ACCO strategy is
based on four principles Clustering, Covering shrinking subdomains, Adaptation,
Periodic randomization (Solomatine, 1999). These four principles are described here.

2.5.3.1 Principals of ACCO strategy
¢ C(Clustering

Clustering is a process of dividing big group of things into groups (clusters); each one
contains things which have similar characteristics and different than other cluster. For
hydrological models calibration, after generating sets of parameters randomly or with
any distribution and calculate its corresponding objective function values, clustering
is used to split parameters population points into regions according to its fit with
observed flow. So, ACCO can identify the most promise parameter values to make
more searching around it which saves too much time. These promised cluster will
considered as subdomains for more global optimization.

e Covering

Covering is to cover the clusters with generated sets of points and calculate the
objective function values at these points to determine its characteristics. The covering
type could be randomly or have grids shape. ACCO uses the pure random approach.
Covering procedure will repeated many times in the clusters that are progressively
reduced in size.

e Adaptation

Adaptation procedures shifts and shrink the search subregions, also it changes the
number of points of each covering. This process updates its algorithmic behavior
based on new information came with model running.

e Periodic randomization

Due to generating parameters in probabilistically there is a possibility to miss the
global optimum, so, ACCO re-randomize the initial populations to solve the problem
several times or use re-randomization at intermediate steps.

2.5.3.2 Strategy of ACCO
In this section, the main steps of optimization using ACCO are described for two
parameters (CN2 and ALPHA_BF) calibration model.

First step is the initial sampling, it generates randomly with uniform distribution an
initial population of N points from the practical parameters ranges. In the second step,
the objective function values at each point of the population is calculated, after
identify the best values the number of population will be reduces, so, this step called
(initial reduction). Third step (initial clustering) is an application to "clustering
principle"; it splits the population into number of clusters, and keeps dimensions of
these clusters. Fourth step, for each cluster, it generates more points inside cluster
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under studying, evaluate the objective function at every point then it removes the
worst points, these processes what we called before "Covering ". After covering, there
is population adaptation, where ACCO identifies the center of attraction of the cluster
(it could be the best point) then it shifts the whole cluster so its center coincide with
the center of attraction. Next step tries to reduce the size of the region by use smaller
cluster dimensions surrounding the same center of attraction. All these steps should be
repeated many times for each cluster tell meet stopping criteria.
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2.5.4 Adaptive cluster covering with local search (ACCOL)

ACCOL have are two phases: in the first one it applies ACCO to find several regions
of attraction within parameters space. For the second phase ( local search ) it uses the
points that generated from the ACCO phase and apply Powell-Brent search to find
accurately the minimum.

2.5.5 Genetic algorithm (GA)

This algorithm became one of the most successful optimisation techniques that apply
in hydrological models which based on fuzzy-logic and artificial neural networks. it
tries to emulate a biological process that each child is a copy of its parents plus a
variation. so, GA try to use the generated set of parameters of each model run
(parents) to generate a new set of parameter (child)(Kamp and Savenije, 2006).

(Holland, 1975)wrote that GA is based on the principle of the survival of the fittest
which tries to retain genetic information from generation to generation. furthermore
he mentioned that the major advantages of GA algorithms are their broad
applicability, flexibility and their ability to find optimal or near optimal solutions with
relatively modest computational requirements(Gupta, et al., 1999).

Genetic algorithm starts by generate a random population from parameters to be
calibrated, and calculate the objective function values according to these parameters
guess. Secondly, select a group of the population which have better objective function
values, these selected population points (parents) will have more probability to
generate next generation (childs). Third step called crossover, it is a process of
exchange information between selected population points to generate new childs.
Mutation is the fourth step; it is used to randomly change the value of single point
within the population. Selection, crossover and mutation should be repeated tell
elapse predefined number or met a stopping criterion.
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Figure 2-14 Crossoverand mutation of parameters

2.5.6 M-simplex calibration algorithm

M-simplex is one of the multistart local search methods (see section 2.4.2.3). So, it
consists mainly of three steps. Firs one is to generate a set of random points and
evaluate the objective function at each of these points. Second step called reduction; it
reduces the initial set by choosing some points which have lowest value of objective
function. Last step is the local search; it launches the local search procedures starting
from each of the selected points. In M-simplex, local search process depends on the
downhill simplex method (see section 2.4.1.1.1). The global optimum point is the best
point results from local search.

2.6 Conditions of good calibration

Well-calibrated model should have (a) water balance close to measured one (b)
simulated hydrograph shape similar to observed hydrograph (c) similarity with
observed peak flows with respect to timing, rate and volume (d) similarity with
observed low flows.

(Madsen, 2000) presents the following four equations to test if model achieved these
goals. The first equation tests the condition (a) by measuring the overall volume error.
Second one tests the shape of the simulated hydrograph. Third equation is a test of
model goodness of fit with the peaks flow events. Last equation tests model goodness
of fit with low flow events.

Z W; [Qobs,j = Qi (9)]

F(6)= ¥
2w

i=1

Equation 2-3
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Z sz [Qobx,j - ngm,j (0)]2

F(0)= m Equation 2-4
>
i=1
1
nj 2
1 M, z M/yi2 [Qobs,j - Qsim,j (0)]2
F(0)= L — Equation 2-5
M p J=1 Z W;
i=1 l
1 M zwiz [Qobs,j _Qsim,j (0)]2
F(6)=— = - Equation 2-6
M, 5 ZW'Z
=
Where:

Qobs,i the observed discharge at time i,
Qsim,i the simulated discharge,

N the total number of time steps in the calibration period,

Mp the number of peak flow events,

Ml the number of low flow events,

nj the number of time steps in peak/low flow event no. j,

u the set of model parameters to be calibrated, and

wi a weighting function. Peak flow events are defined as periods where

the observed discharge is above a given threshold level.

2.7 Uncertainty analysis techniques

With increasing of interest of analysis the uncertainty in watersheds hydrological
models many methods have been developed to estimate model uncertainty. Choice
between these methods is according to the level of models complexity. In (Shrestha
and Solomatine, 2008) these methods was classified into six main classes. Analytical
methods, approximation methods, sampling based methods, Bayesian methods, and
methods based on analysis of the model errors.

The next section is a brief explaining to the uncertainty analysis classifications. After
that, there are some descriptions to some common methods to estimate uncertainty in
hydrological models, most of these methods applied on a case study.

2.7.1 Classifications of Uncertainty analysis methods

Analytical methods compute probability distribution function of model outputs.
And, it is applicable for simple models where the propagation of uncertainty through
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the model is straightforward. Although of its easiness, its applicability is limited to
models with linear summation of independent inputs.

Approximation methods provide only the moments of the distribution of the
uncertainty output variable. Some of approximation based methods depend on the use
of the Taylor series expansions for propagate the uncertainty through model.
Furthermore, the main advantage of approximation methods, that it is enough to
propagate the moments of each probability distribution of the model inputs instead of
the entire probability distributions. On the other side, the main disadvantages of these
methods are, firstly, it cannot be applied to problems with discrete or discontinuous
behaviors because the model function should be differentiable. Secondly, it is
computationally intensive as they typically require the evaluation of second order
(may be higher) derivatives of the model. Thirdly, although these techniques are
capable of propagating central moment of input distributions, information regarding
the tails of the input distributions cannot be propagated.

Sampling based methods are the most common techniques to study the
propagation of uncertainty. These methods involve running a set of model simulations
at a set of sampled points from probability distributions of inputs and establishing a
relationship between inputs and outputs using the model results. There are two types
of sampling, the first one is simple random sampling that depends on the entire
population and second is stratified random samples, which separate the population
elements into non-overlapping groups called strata.

Furthermore Sampling based methods involve complex and nonlinear model and
capable of solving a great verity of problems. do not require access to the model
equations. Monte Carlo Methods and Latin Hypercube Sampling methods are the
most common sampling based uncertainty analysis methods.

Bayesian methods utilize Bayes' theorem to estimate or update the probability
distribution function of the parameters of the model and consequently estimate the
uncertainty of model results. Generalized likelihood uncertainty estimation (GLUE) is
based on Bayesian methods; it will be discussed in section (2.7.6).

Methods based on analysis of the model errors; its idea is to analyses model
residuals that occurred in reproducing the observed historical data. UNEEC
uncertainty analysis methods which described in details in section (2.7.9) and applied
in section 6.4.

2.7.2 Measuring Uncertainty

Two methods to measure the uncertainty amount are used in this study. The first one
is percentage of points that fall between upper and lower prediction interval. And the
second one is the average width of uncertainty region between those two prediction
interval boundaries.

First of all the prediction interval is different than the confidence interval, the first
expresses the accuracy of model with respect to observed value. But confidence
interval measures the accuracy of our estimate of the true regression. In real problems,
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the prediction interval is more practical. If we need to have 90% predictive
uncertainty, we have to calculate 5% and 95% quantiles of probability distributions of
all possible flows values at each time step. After calculating upper and lower
prediction limits, account number of flow observations that fall between those two
limits, The higher this percentage the higher certain model, Figure 2-15.

On the other hand, the mean width of the prediction interval expresses the rapidity of
searching tool to become close to the optimum value.

250 I I
—— Lower prediction limit
— Upper prediction limit
200r R * 0obs i
150+ ’ . '7': \‘N’“‘« ' .
@£ A ° ‘{ o\ )
52) .' | ® \\ ° q‘ ° o‘ N\ o~ ° ° \\
£ P N R
O Mo | \ °® 4 // [ % ° \
1 OO r [ A % ‘ e . e%e ofO e ® o ° -
[ . ATAS c/ "l.‘;p“ ‘g\ M
O | | | | | |
3200 3250 3300 3350 3400 3450 3500
Time ( days)
Figure 2-15

2.7.3 The probability theory description

It is the most complete description and the best understood method to solve
uncertainty problems. The chief five approaches in probability theory are described
briefly here. The classical approach assumes in case of finite number of independent
outcomes the probability of an event is the proportion of occur this event to the total
possible outcomes. The frequency approach used in case of an experiment that can be
repeated under essentially identical conditions but the observed outcomes is random.
The Propensity interpretation applied in cases of long recorded events repeated under
essentially identical conditions that are difficult to release in practice. The Subjective
approach measures our belief in probability of an event to occur. The Logical
approach used when the outcomes are not independent and there is some implication
between them so it uses the conditional probability as the degree of logical
approximations. However, in most practical problems such a probability function
cannot derive or found precisely.

2.74 PARASOL

Parasol is an optimization and uncertainty analysis it is based on (SCE_UA) as
explained in section 2.4.2.4.
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For uncertainty analysis, ParaSol divides the outputs of SCE-UA optimization method
into ‘good’ simulations and ‘not good’ simulations. This process could be done using
two separation techniques. The first method based on y2-statistics to delineate the
confidence regions around the optimum. The second method uses Bayesian statistics
to define high probability regions.

2.7.5 Monte Carlo technique description

The most known sampling method is the Monte Carlo technique. The idea behind
this method is to generate repeatedly a large number of realizations of model
parameters according to (subjective) probability distributions and uncertainty bounds
for each parameter. But to come up with these (subjective) probability distributions
and uncertainty bounds, one must apply professional judgment after extensively
reviewing the available literature and data. The Monte Carlo errors decreases as the
sample size increases, but increase in computational time, which is not practical in
many cases. There is Variance reduction techniques aim at obtaining high precision
for MCS results without having to substantially increase the sample size. Among
them Simple Random Sampling (SRS), generalized likelihood uncertainty estimation
(GLUE), Latin hypercube sampling (LHS), and Monte Carlo Markov chain MCMC
are widely used.

In SRS, Simple random sampling is the basic sampling technique. Each individual is
chosen entirely by chance and each member of the population has an equal chance of
being included in the sample. In standard LHS, the distribution for each parameter is
divided into sections of equal probability; where the number of sections equals the
number of samples or iterations to be made in the Monte Carlo simulation. During the
sampling, the random numbers are selected by chance within each section, but only
one random number is chosen from each section; then once a random number has
been selected from a section, that section is excluded from the rest of the analysis.

The Monte Carlo application steps schematization is explained in Figure 2-17 and
Figure 2-18 Now the model can be start running by sampling a group of parameters
and try to give weight to each one. Repeat the previous steps many times then we will
have a matrix of outputs according to the different values of input data and the
generated parameters. When this matrix drawn it will form a region of expected
output values through the whole inputs and parameters values.
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2.7.6 Generalized likelihood uncertainty estimation (GLUE)

The fourth technique that will discuss here is the Generalized Likelihood Uncertainty
Estimation (GLUE). This method developed by (Beven and Binley, 1992) as a general
strategy for model calibration and uncertainty estimation in such complex models. It
became one of the most widely used methods for simultaneous calibration and
uncertainty estimation in the water resources and environmental modeling. But the
main drawback of this technique is the huge number required of model
simulations(Blasone, et al., 2006).

Due to it is not possible to estimate that any particular set of parameter values will
represent a true paradigm, GLUE measure of how well the model conforms to the
observed flows by assessment the likelihood of parameter sets, where likelihood is the
probability of achieve an observed flow given a set of parameters, then it assigns a
likelihood weight for each parameters sets.

GLUE generates a combination of flow hydrographs given generated sets of
parameters values. Then it chooses the set of parameters that gives the best fit with the
observed data and estimates the uncertainty bounds around the optimum solution.

It runs models with a large number of Monte Carlo procedure simulations with
different parameter sets, sampled from proposed (prior) distributions, and inferring
the outputs and parameter (posterior) distributions based on the set of simulations
showing the closest fit to the observations.

A GLUE analysis consists of the following three steps:
1. select a function to represent the model goodness of fit with the observations.

2. A large number of parameter sets are randomly sampled from the prior
distribution and each parameter set is assessed as either “behavioral” or “non-
behavioral” through a comparison of the “likelihood measure” with the given
threshold value.

2) Each behavioral parameter is given a “likelihood weight” according to: where N is
the number of behavioral parameter sets.

wW. =

1(8)
> L(8,)
k=1

3) Finally, the prediction uncertainty is described as prediction quantile from the
cumulative distribution realized from the weighted behavioral parameter sets.

In literature, the most frequently used likelihood measure for GLUE is the Nash-
Sutcliffe coefficient (NS), which is also used in the GLUEQ6 program:
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Where n is the number of the observed data points, and yti and yti (.) represents the
observation and model simulation with parameter at time ti, respectively, and y is the
average value of the bservations.
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2.7.7 Sequential Uncertainty Fitting (SUFI-2)

Sequential uncertainty fitting procedure (SUFI-2) is a stochastic procedure; it
performs calibration and uncertainty analysis. Parameter uncertainty is expressed as
ranges and is sampled using a Latin Hypercube procedure. Two factors quantify the
goodness of calibration and uncertainty analysis. The first one is the P-factor,
quantified the percentage of data captured by the 95% prediction uncertainty
(95PPU), and the other one is the R-factor, which quantifies the average thickness of
the 95PPU.it is good to notice that the ideal values for p-factor and d-factor are 1 and
0, respectively. However, this is usually unattainable. But reasonable values are more
likely to be around p-factor > 70% and d-factor < 1.2.

We do the SUFI2 analysis by being sure that “most” of the measured data is
“respected” or “bracketed” by the 95% prediction uncertainty (95PPU). The
percentage of the measured data that is bracketed by the 95PPU as well as the
thickness of the 95PPU quantifies the strength of the calibration. In SUFI-2,
parameter uncertainty accounts for all sources of uncertainties such as uncertainty in
driving variables (e.g., rainfall), conceptual model, parameters, and measured data.
The degree to which all uncertainties are accounted for is quantified by a measure
referred to as the P-factor, which is the percentage of measured data bracketed by the
95% prediction uncertainty (95PPU). The 95PPU is calculated at the 2.5% and 97.5%
levels of the cumulative distribution of an output variable obtained through Latin
hypercube sampling. Breaking down the total uncertainty into its various components
is of some interest, but quite difficult to do, and as far as the authors are aware, no
reliable procedure yet exists.

Another measure quantifying the strength of a calibration/uncertainty analysis is the
so called R-factor, which is the average thickness of the 95PPU band divided by the
standard deviation of the measured data SUFI-2, hence seeks to bracket most of the
measured data with the smallest possible R-factor. SUFI-2 starts by assuming a large
parameter uncertainty (within a physically meaningful range), so that the measured
data initially falls within the 95PPU, then decreases this uncertainty in steps while
monitoring the P-factor and the R-factor. In each step, previous parameter ranges are
updated by calculating the sensitivity matrix (equivalent to Jacobean), and equivalent
of a Hessian matrix, followed by the calculation of covariance matrix, 95%
confidence intervals of the parameters, and correlation matrix. Parameters are then
updated in such a way that the new ranges are always smaller than the previous
ranges, and are centered on the best simulation. The goodness of fit and the degree to
which the calibrated model accounts for the uncertainties are assessed by the above
two measures. An ideal situation would lead to a Pfactor of about 100% and an R-
factor near zero. When acceptable values of R-factor and P-factor are reached, then
the parameter uncertainties are the desired parameter ranges. Further goodness of fit
can be quantified by the R2 and/or Nash-Sutcliffe (NS) coefficient between the
observations and the final best simulation.
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2.7.8 First-order second moment (FOSM)

The first-order second moment (FOSM) method is one of the uncertainty assessment
methods that are based on probability theory. Owing to its simplicity, the FOSM
method is one of the most widely used techniques in civil engineering applications for
uncertainty assessment. This method uses a linearization of the function that relates
the input variables and parameters to the output variables. It takes its name from the
fact that it uses the first-order terms of the Taylor series expansion about the mean
value of each input variable and requires up to the second moments of the uncertain
variables (Maskey, 2004).

In the following paragraph, there is a general idea about this method. The mean (also
called the first moment) and variance (or second moment) information on the
probability density function of studied variables is needed. In many cases the
available information is limited to the mean and variance of X. Furthermore, even if
the probability density function is known, the computation of the integrals of the
mean and variance may be time consuming. The FOSM method provides faster
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approximations that allow approximate values of the mean and variance to be
computed.

For example, consider a function of several random X 15X , .

Y =yX,,...X )

Expanding the function in a Taylor series about the mean values X e X 0 yields the
following expressions

EY )=y ()71,...,)?”) Equation 2-7

n _ 2 Equation 2-8
Var(Y):El( (x, —X,»)a—y”
oX

2 v )35 5 (2] 2 e x )

i=l j=i+l

cov(X,.X ,)=E [(X _X

N —
—_—
-

.
I
al
.
N —
1

Where Cov (Xi, Xj) is the covariance between Xi and Xj, defined as

dy

All derivatives are evaluated at the mean values X ; , The quantity X is called the

sensitivity of Y to the input variable Xi. The first term on the right-hand side of

Equation (2) represents the contribution of the variances of the input variables to the
total variance of the output. The second term denotes the influence of a possible
correlation among the various possible pairs of input variables. If the input variables

are statistically independent, i.e. €OV (X X ) =0 this second term vanishes and the

variance of Y becomes

2
var(Y) = Z(;Tyj Var(Xi)=ZVar(Y ), Equation 2-9
i=1 i=1

i

Where Var(Y)iis the variance in Y due to the variance (uncertainty) in the input
variable Xi.

Although the method is simple and widely used, it suffers from some disadvantages,
which will be discussed din more details in the Literature review chapter.

Furthermore, there are also the different applications of artificial neural networks
(A.N.N.). The fuzzy set theory that the representation of uncertainty by a non-
probabilistic approach began to increase in pace rapidly
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2.7.9 Uncertainty estimation based on local errors and clustering (UNEEC)

This section presents a novel method to estimate models total uncertainty using
machine learning approach. This method is called "uncertainty estimation based on
local errors and clustering" and it was originally developed by (Durga and Dimitri,
2006). It assumes that the model error (mismatch between the observed and simulated
river flow) is the best indicator of the total model uncertainty.

UNEEC considers model as in Equation 2-10

y=M(X,0)+e =3+, Equation 2-10

Where:
X the input data
0 the parameter values,
N4 the model output,
£ the additive error,

UNEEC consists of three main parts, clustering, compute empirical error distribution
and build uncertainty processor.

Cluster analysis here is the partition of the input data into clusters. There are three
types of clustering (excluding, overlapping and hierarchical). In excluding clustering
(like K-means clustering) each data point belongs to only one cluster. Overlapping
clustering (like fuzzy C-means clustering) each data point belongs to several classes
with some degree ranges from zero to one. Last clustering type, hierarchical
clustering, it begin with each data point as a separate cluster then it merge them into
larger clusters(Durga and Dimitri, 2006) .

compute empirical error distribution, in this step UNNEC calculates prediction
interval for any cluster by fitting the error distribution to each cluster independently
without pre-assumptions about model errors are not required.
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3 Tools used in watershed modeling and optimization

3.1 Soil and water assessment tool (SWAT)
3.1.1 Introduction

Selecting the appropriate tool is the first step in hydrological watershed modelling and
it has great affect on the final results. For this model Soil and Water Assessment Tool
(SWAT) was selected as a hydrological modelling tool. Because it is accepted by
most of the hydrologiest as a powerfull hydrological modeling tool. And it simulates
very large basins or a variety of management strategies without excessive investment
of time or money. Also it is a continuous time modelling tool that enables its users to
study long-term impacts. Furthermore, it is easy to use it and it's documents are very
detailed and clear. Lastly it is a free software and public domian which make it easy to
use it even in the limited budget projects.

As a quick overview on SWAT, this software developed by the United State
Department of Agriculture (USDA), to predict the impact of land management
practices on water, sediment and agricultural chemical yields in large complex
watersheds with varying soils, land use and management conditions over long
periods. SWAT can deal with large watersheds without high costs of money or
computer time. Moreover, it is valid for the biological issues, and to study long-term
hydrological processes and its impacts.

SWAT devides the watershed subcatchments into number of hydrologic units(HRUs)
in regards to increase model accurasy. These units are the areas that have the unique
compination of landuse, management system and soil attrinutes so it will be modelled
in the same method and have the same parameters. HRUs became a general role that
every subbasin shouls has (1-10) HRUs. SWAT groups the input parameters into
cateegories like (subbasin, wetland, wateruse, managent, etc) inputfiles. The total
number of parameters to model watersheds it may be needs over 300 parameters to
discribr it very accuratly.

In the following, a short overview, on the mathematical equations that control
hydrological process in SWAT models, more details are given in . First of all, water
balance is the driving force behind everything that happens in the watershed, where
the laws for conservations of mass and momentum are used to describe the water
balance in the hydrological system. Also, SWAT deparates hydrological process into
two main parts, these parts are land and routing phases. Figure 3-2 and Figure 3-3
displays the whole hydrological process in SWAT.

3.1.2 SWAT Mathematical equations
A complete description of SWAT equations can be found in (Neitsch, et al., 2002).

3.1.2.1 Main phases in SWAT hydrological processes
land phase of the hydrologic cycle controls the amount of water, sediment, nutrient
and pesticide loadings to the main channel in each subbasin. While routing phase
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defines as the movement of water, sediments, etc through the channel network of the

watershed to the outlet.

land phase consists of precipitation interception, surface runoff, soil and root zone

infiltration, evapotranspiration and ground water flow . And SWAT solves this phase

using the following water balance equation:

t

SW, =SW, + Z:, (Risy = Oy —Ey = O — Q) Equation 3-1
Where SW; is the final soil water content (mm).

SW, is the initial soil water content (mm).

t is the time (days).

Ruay 18 the amount of precipitation on day i (mm).

Qsurf 1s the amount of surface runoff on day i (mm).

E, is the amount of evapotranspiration on day i (mm).

Weeep 18 the amount of water entering the vadose zone from the soil profile on

day 1 (mm). and
Q,w 1s the amount of return flow on day i (mm).
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Figure 3-1 Schematic of pathways available in SWAT
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3.1.2.2 Surface runoff calculations

For the surface runoff process, it occures whenever the rate of water application to the
ground surface exceeds the rate of infiltration. SWAT provides two methods for
estimating surface runoff: the SCS curve number procedure and the Green & Ampt
infiltration method. here is a brief discription to both methods.

1. The SCS curve number procedure is a function of the soil’s permeability, land
use and antecedent soil water conditions. where the SCS runoff equation is an
empirical model that came into common use in the 1950s.

(R

thi tion is : Quy = =L Equation 3-2
is equation is : <.y m quation 3-

Where Q¢ :the accumulated runoff or rainfall excess (mm),
Raay :the rainfall depth for the day (mm),
1, :the initial abstractions (surface storage, canopy interception, infiltration
prior to runoff) (mm), and
S :the retention parameter.
theredore, Runoff will only occur only when Rday > la. and That retention parameter S
is defined as:

1000 j

S =254——-10 i -
( CN Equation 3-3
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Where CN is the curve number for the day. and the initial abstractions, /s, is

2
commonly approximated as 0.2S and Qu.; = (% Equation 3-2
becomes
(R, —0.25) _
0 surf (R - 0.8S ) Equation 3-4

SWAT calculates CN using soil classes and land uses classifications data. Moreover,
it makes three classes of CN. The first one CN1 is the lowest; it is corresponding to
dry condition. The third type CN3 is corresponding to wet condition. While the
second type CN2 is the curve number in the average moisture case. The moisture
condition CN2 is assumed to appropriate for 5% slopes.

2. The Green & Ampt equation was developed to predict infiltration assuming
excess water at the surface at all times. The equation assumes that the soil
profile is homogenous and antecedent moisture is uniformly distributed in the
profile. The Green-Ampt Mein-Larson infiltration rate is defined as:

‘ow ’ Aev
Joge = Koo | 14 ——— Equation 3-5

inf, ¢

where fins :the infiltration rate at time ¢ (mm/hr),
K. :the effective hydraulic conductivity (mm/hr), is approximately equivalent
to one-half the saturated hydraulic conductivity of the soil, Ky,

Wy :the wetting front matric potential (mm), where matric potential is A force
between water and soil surfaces

ABy :the change in volumetric moisture content across the wetting front
(mm/mm) and
Finf :the cumulative infiltration at time ¢ (mm H20).

3.1.2.3 Peak runoff rate assessment

The peak runoff rate is the maximum runoff flow rate that occurs with a given rainfall
event. The peak runoff rate is an indicator of the erosive power of a storm and is used
to predict sediment loss. SWAT calculates the peak runoff rate with a modified
rational method.

_ arc ’ Qsmf ) Area
qpeak - 3.6-1

Where gpeak is the peak runoff rate (m’/s),
oz s the fraction of daily rainfall that occurs during the time of concentration,
QOsuwifis the surface runoff (mm),
Area is the subbasin area (km?),
tconc 1S the time of concentration for the subbasin (hr) and

3.6 1s a unit conversion factor.
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3.1.2.4 Evapotranspiration assessment

Evapotranspiration is a collective term that includes all processes by which water at
the earth. surface is converted to water vapor. It includes evaporation from the plant
canopy, transpiration, sublimation and evaporation from the soil. The difference
between precipitation and evapotranspiration is the water available for human use and
management. Assessment of watershed evapotranspiration is critical in the assessment
of water resource. SWAT calculates potential and actual evapotranspiration.

SWAT incorporated three numerical methods to estimate potential evapotranspiration
PET. The Penman-Monteith method, the Priestley-Taylor method and the Hargreaves
method, also user can enter PET manually. On the other side, SWAT calculates actual
evapotranspiration ET after determine PET. SWAT first evaporates any rainfall
intercepted by the plant canopy. Next, SWAT calculates the maximum amount of
transpiration and the maximum amount of sublimation/soil evaporation. When PET is
less than amount of free water held in the canopy, it assumes that ET = PET.
However, when PET less than amount of free water held in the canopy, so no water
will remains in the canopy after initial evapotranspiration.

3.1.2.5 Percolation assessment

Percolation is calculated for each soil layer in the profile. Water is allowed to
percolate if the water content exceeds the field capacity water content for that layer.
The volume of water available for percolation in the soil layer is calculated:

valy,excess = SVVZy - FCly if S‘/Vly > FCZy Equation 3-6
valy,excess = 0 lf S‘/Vly < FCZy Equation 3-7
Where:

SWiy,excess 1s the drainable volume of water in the soil layer on a given day (mm)
SWiyis the water content of the soil layer on a given day (mm) and
FClyis the water content of the soil layer at field capacity (mm).

The amount of water that moves from one layer to the underlying layer is calculated
using storage routing methodology. The equation used to calculate the amount of
water that percolates to the next layer is:

w

perc

— At
perc,ly = S‘/Vly,excess ' 1_ exp[ :| Equation 3-8

where
Wperc,ly is the amount of water percolating to the underlying soil layer on a
given day (mm),
SWiy,excess is the drainable volume of water in the soil layer on a given day
(mm),
At is the length of the time step (hrs), and
TTpercis the travel time for percolation (hrs).

The travel time for percolation is unique for each layer. It is calculate by
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_ SAT,~FC,

perc — K Equation 3-9

sat

Where
TTpercis the travel time for percolation (hrs),
SATiyis the amount of water in the soil layer when completely saturated (mm),
FCiyis the water content of the soil layer at field capacity (mm), and
Ksar1s the saturated hydraulic conductivity for the layer (mm/h).

3.1.2.6 Lateral Flow assessment

Lateral flow will be significant in areas with soils having high hydraulic
conductivities in surface layers and an impermeable or semipermeable layer at a
shallow depth. In such a system, rainfall will percolate vertically until it encounters
the impermeable layer. The water then ponds above the impermeable layer forming a
saturated zone of water, i.e. a perched water table. This saturated zone is the source of
water for lateral subsurface flow.

the drainable volume of water stored in the saturated zone of the hillslope segment per
unit area, SWiy,excess, 1S

1000-H, -¢,-L,.
SW excess = ”2 P L Equation 3-10

where

SWiyexcess 1S the drainable volume of water stored in the saturated zone of the
hillslope per unit area (mm),

Ho is the saturated thickness normal to the hillslope at the outlet expressed as a
fraction of the total thickness (mm/mm),

@y is the drainable porosity of the soil (mm/mm),

Lninis the hillslope length (m), and

1000 is a factor needed to convert meters to millimeters.

3.1.2.7 Groundwater assessment

Groundwater is water in the saturated zone of earth materials under pressure greater
than atmospheric. Water enters groundwater storage primarily by infiltration or
percolation. Water leaves groundwater storage primarily by discharge into rivers or
lakes, but it is also possible for water to move upward from the water table into the
capillary fringe. Furthermore SWAT simulates two aquifers in each subbasin. The
shallow aquifer is an unconfined aquifer that contributes to flow in the main channel
or reach of the subbasin. The deep aquifer is a confined aquifer. Water that enters the
deep aquifer is assumed to contribute to streamflow somewhere outside of the
Watershed .

The water balance for the shallow aquifer is:
aqsh,i = aqsh,i—l + Wrchrg - ng - Wremp - Wdeep - Wpump,sh Equation 3-11

where
agshi  the amount of water stored in the shallow aquifer on day i (mm),
agshi-1  the amount of water stored in the shallow aquifer on day i-1 (mm),
wrehrg  the amount of recharge entering the aquifer on day i (mm),
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QOgw the groundwater flow, or base flow, into the main channel on day i
(mm),
wrevap  the amount of water moving into the soil zone in response to water
deficiencies on day i (mm),
wdeep  the amount of water percolating from the shallow aquifer into the deep
aquifer on day i (mm), and
wpump,sh the amount of water removed from the shallow aquifer by pumping on
day i (mm).
The water balance for the deep aquifer is:
aqd4,; =94 i1 T Waeep =W pump.ap
Where
aqdp1  the amount of water stored in the deep aquifer on day i (mm)
aqdpi-1  the amount of water stored in the deep aquifer on day i-1 (mm)
wdeep  the amount of water percolating from the shallow aquifer into the deep
aquifer on day i (mm), and
wpump,dp the amount of water removed from the deep aquifer by pumping on
day i (mm).

3.1.3 Important input files for SWAT

There are some important files control model operations in SWAT. SWAT user is
able to read / edit these files to control model operation and its printouts. The
following sections review some of those.

Watershed configuration file is called (fig.fig). It defines the routing network in the
watershed. Controlling SWAT inputs/outputs is done mainly by (file.cio) file. It
contains names of input files for all watershed level variables, controlling model
variables and output printing variables. Management input files are those files with
(mgt) extension. It contains management scenarios and specifies the land cover
simulated. Files with (sol) extension are soil input files. It contains information about
the physical characteristics of the soil. Groundwater input files have extension (gw). It
contains information about the shallow and deep aquifers.

Some of the privious files are editable by user to give him more flixability to control
modeling process in case of using SWAT out of the graphical interface. or when
linking SWAT model with external systems. te most inportant ones will discuss in the
next paragraph.

(fig.fig). This file has thirteen different commands may be used in the watershed
configuration file. The commands that used in this study with their numeric codes are
reviewed here. First command in the list is finish command is the last command line
in the .fig file. The finish command notifies the model that the end of the command
lines in the watershed configuration file has been reached. Second one is the subbasin
command simulates all processes involved in the land phase of the hydrologic cycle
and computes runoff, sediment, and chemical loadings from each HRU within the
subbasin. Third command is the route command, it routes the water, sediment, and
chemical loadings through a main channel or reach. Fourth command is the add
command, it is used to sum the water, sediment, and chemical loadings of any two
flows. Last command is the saveconc command, it saves flow, sediment and water

43



quality indicator information from a specified point on the reach network to a file. The
water quality information is reported as concentrations. This command is useful for
isolating reach information at a particular point on the channel network.

(File.cio) SWAT user can select between different types of calculations that provided
by SWAT by selecting values of factor called ICLB. ICLB values ranges from O to 8.
Zero means run the model and calculate the outflow. One is for calculating the
sensitivity analysis and write the most sensitive parameters I file called
(sensresult.out). Two could be used to calibrate model parameters by ParaSol and
calculate accepted set of parameters in (goodpar.out) and the best parameters
in(bestpar.out). While ICLB = four directs SWAT to validate the model by rerun the
model using the beast parameters values that calculated from calibration before but
the moduler should change the simulation period to the validation period. Fifth
choice, is to make ICLB = 5 which means run the uncertainty analysis using ParaSol
technique and write the maximum and minimum flows according to the accepted
range of parameters.

3.2 SWAT Arc-View interface

Due to the huge amount of requred input data into SWAT. It uses one of ArcView
extensions called AVSWAT as a graphical user interface to define input data and
other characteristics with easly and quick way. AVSWAT requires the designation of
land use, soil, weather, groundwater, water use, management, soil chemistry, pond,
and stream water quality data, as well as the simulation period, to ensure a successful
simulation. And it creates SWAT input data files. Furthermore, it controls and
calibrates SWAT simulations. Finally, it extracts and organizes SWAT model output
data for charting and displaying.

DEM + /

Drains Metwork 7

| Parameterization |

| Createinputdata I-ii Weather data ;

Sensitivity analysis } I Run SWAT I

| Read outputs | Measured
I out flow

| Calculate the error I-

S Land use =
/
/
i soil classifications

- ) Uncertainty assessment
Calibration

Validation

ResultsReport

Figure 3-3AVSWAT model main steps
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It is a complete preprocessor, interface and post processor of the hydrological model
SWAT and the SWAT interface, which depends on manual editing on the input files.
The Arcview interface used for Watershed Delineation; Land Use and Soil Definition;
Editing of the model Data Bases; Definition of the Weather Stations; Input
Parameterization and Editing; Model Run; Read and Map-Chart Results and
Calibration tool.

Model building procedures using AVSWAT startes after Collecting the data in
appropriate format. these data contains detailed information about Spatial data,
Climate/weather data, Rainfall data and temperature data. Then, firstly define the
spatial data by delineate the study area digital elevation model, catchment shape file
and delineated streams files. secondly, define the Land Use and Soil classifications, so
the hydrological response units could be defined. Thirdly; load the weather data which
is rain fall data, temperature data and weather simulation data. last main step is to
build the input data files to create ArcView tables (.dbf) that store values for SWAT
input parameters also to generate the Initial SWAT ASCII input files. After these
steps the model is ready to run. these steps could be summarized in eight modules: (1)
Watershed Delineation; (2) HRU Definition; (3) Definition of the Weather Stations;
(4) AVSWAT Databases; (5) Input Parameterization, Editing and Scenario
Management; (6) Model Execution; (7) Read and Map-Chart Results; (8) Calibration
tool. these steps

3.3 Optimization and uncertainty analysis development tools

Many software integrated through this study into applying the study objectives. To
link SWAT model with calibration or uncertainty analysis programs two software
packages used. GLOBE used to link SWAT model with three calibration techniques,
and iSWAT used to change edit input files link. The following parts there are
description to these programs.

3.3.1 SWAT interface (iISWAT)

(Yang, 2004) developed this interface to link SWAT text-file-based projects with
external system analysis programs, this interface consist of two executive files
(sw_edit2005.exe, sw_extract2005.exe) and some library files.

First file is editing executable file, it changes SWAT project parameters
according to a given parameters names and values specified in (model.in) text file. So
it is very useful for manual calibration. This file has the following format

X__<parname>.<ext>__<hydrogrp>__<soltext>__<landuse>__<subbsn>
Equation 3-12

The parameter name means that the parameter name will be changed according to
method x for the combinations of given items <hydrogrp>, <soltexture>, <landuse>
and <subbasin>, and the missing item(s) mean(s) this change method applies to this
entire item. The sections in parameter name are separated by two underlines, as single
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underlines are contained in some SWAT parameter names. Here is an example shows
the model.in file.

Table 3-1
v__Rchrg_Dp.gw 0.08
v__Canmx.hru 5.13
v__Esco.hru 0.60
v__Ch_K2.rte 56.43
r__Cn2.mgt -0.08
v__Gw_Revap.gw 0.15
v__Gwgmn.gw 63.48
v__Alpha_Bf.gw 0.72
v__Surlag.bsn 5.70

This means that all Deep aquifer percolation fraction (Rchrg_Dp) had to be replaced
by 0.08, all curve numbers (CN2) had to be multiplying a factor of (1- 0.08 = 0.92),
In <model.in>, a line beginning with “//”” means this line is comment.

Second file is to extract the SWAT outputs into file model.out after running SWAT.
the format of output definition file (swExtract.def) as the following

Comments

rch //data source type, reserved (only rch file is supported at present). The
program will extract data from basins.rch

Output file /loutput filename

Simulation type //simulation type of SWAT project. It can be 0---monthly, 1—daliy, 2—
yearly simulation, -1 lets the program get the type of swat simulation
Starting year /Istart simulating year of the SWAT project.

Reach number  output option outputVariablel outputVariable2 Remark

Here is an exampled of (swExtract.def)

// this is an example

rch

model.out /[output filename

-1 lets the program get the type of swat simulation

-1 means let the program get the start year of the simulation
47 FLOW_OUT

This file means that sw_extract.exe will extract the discharge for reach 47 from
basins.rch to model.out. and here is an example of the outputs

FLOW_OUT47_1970.1 33.69
FLOW_OUT47_1970.2 33.69
FLOW_OUT47_1970.3 33.26
FLOW_OUT47_1970.4 33.26
FLOW_OUT47_1970.5 32.83

A schematic of iISWAT working is illustrated in Figure 3-5. First, sw_edit.exe reads
the parameter information from model.in and change the parameter value of the swat
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text-file-based project, and then swat runs, and in the last step sw_extract.exe extracts
the specific results defined in file model.out .

Data/File - Program

{ x:rndel in “)

) \.

Sw_edit.exe
// Swat input \/
files - -
\“ — ™™ Swat2000 exe
f‘f Swat \I E
'\ outputs Sw_exfract exe
( model out

Figure 3-4 iSWAT working stratigy

3.3.2 GLOBE

GLOBE: global and evolutionary optimization tool developed by D. P. Solomatine.
GLOBE is a global optimization tool that search for minimum of a function of
multiple variables.

GLOBE configured to use an external program to supply the objective function
values. The output file of program is used directly by GLOBE. The number of
independent variables and its constraints values are supplied by the user in the form of
a simple text file.

GLOBE applies the following seven global optimization techniques to calibration
problems:

Controlled random search (CRS)

Genetic Algorithm (GA)

Adaptive cluster covering (ACCO/ACCOL)

Multis (a version of Powell-Brent non-derivative algorithm, with multiple

randomized starts)

e M-Simplex (a version of the simplex decent algorithm with randomized multiple
starts)

¢ Improved Controlled random search (CRS4a)

e Adaptive cluster descent (ACD)
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GLOBE iteratively generate values of the model's variables (input vector) and supply
it to the external program via the file G.PIN. Then GLOBE runs the external program
(written by the user). This program must read G.PIN file (This file contains real

SWATedi® SWAT

model.in Nash-Sutcliffe
G.pin G.rsp

T3 croecl®

Figure 3-5 Main steps of GLOBE program

External program
generates the vatue of
the minimized function

G PIN
file with the values of
independent variables

G R3P
file with the fimction
walue

GLOEBE
generates the values of

itdependert variakles

&>

Figure 3-6 Exchanging information between SWAT and GLOBE

numbers either on one line separated by spaces or on separate lines; example
follows). Then this program calculates the function value and places the calculated
value (one real number in any format) to the file G.RSP. This file is then read and
analyzed by GLOBE; the new G.PIN file is generated, etc. The results are reported on
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screen and in a number of report files. These results files have extensions HIS, RST
and OUT. (Project name).his (file with the history of algorithms runs; (Project
name).rst (similar to the previous one but gives more details); (Project name).out (file
to be used in spreadsheet programs to for visualize the comparative performance of
algorithms).

3.3.3 UNEEC TOOL for uncertainty estimation

This is a Matlab graphical user interface developed by (D. L. Shrestha,). Figure 3-7
displays the main window of this tool, it shows switching buttons between different
windows, also it displays the controlling buttons. UNEEC TOOL uses different
alternative data driven modeling approaches to estimate hydrological models
uncertainty, these alternatives are found in main module window, from this window
also, UNEEC TOOL reads the necessary data for the selected model (Figure 3-9).
After that, user should select clustering method, UNEEC TOOL provides four
clustering methods and it also gives user ability to add his own clustering method
Figure 3-10. All uncertainty analysis options, by means, select uncertainty analysis
tool, define confidence level, select validation parameters and some other options are
found in window of uncertainty module, as can see in Figure 3-11. After completing
all these steps, user now can click on run buttons, the results will be as

) UNEEC TOOL for UNCERTAINTY ESTIMATION =3
Project  Export  Help k|

Froject Detail

Project Detall

Praoject Mame Mzoia : ~
Rain_t_1 1

_ . Rain t 2

Working Folder | D\AdehDurga LahUNEEG i@ ETt

' ET t 1

N - 1 ET 12

Training File  |D:iAdeRDurga LahUNEECHTrainD2 .. | Erordhs 1

Cobs_t 1

Clobs t 2 v

Main Module

Clustering Medule | | vverification File [0-\adeNDurga LahUNEECHerifice|...

Axailahble Variables: 11

Uncertainty Module

| Close | | Help | ‘ Run ‘

Flat Option Load Praoject Save Project

04-Apr-2008 17:33:03 Main Module is Loaded... N
Ready

Figure 3-7 UNEEC TOOL main interface
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— Main Module

Model Cutput of Physically based model (...

Calibrated Output File

hysically hased model (Mo need to run model)

DAdel\Durga LalURNEECATrQim. txt Eelii SN =il

I
1 Diata driven miodel

Meural Metwork Toolbox
DiAdelDurga LablUNEECYWeGm.txt|  MeuroSolutions for Matlab

“erification Output File

weka.classifiers.mS. MSPrime

weka. classifiers LVWR

weka. classifiers LinearRegression
weka.classifiers.neural. MeuralMetwork

| Add Your Cren Model

Figure 3-8 Selecting the uncertainty analysis method in UNEEC TOOL
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— Clustering Module

Method |Fuzzy c-Means Clustering V| > M

Rain_t_1

Rain_t 2
Cluster Mo. ErarAhs_t
Clabs_t 1
Clobs t 2

Maormalization [ Add Computed Error

<<
— Fuzzy Clustering v

F -1l Clusteri
Exponential Coeft uzzy c-Means Clustering v

Fuzzy c-Means Clustering

Threshald III k-Weans Clustering

Suhtractive Clustering
Hierarchical Clustering

Add Y¥our Own Clustering Method

Figure 3-9Clustering options in UNEEC TOOL

-Uncertainty Madul

wika. classifiers. m5. MaPrime L

hodel | weka. classifiers. m5. MaPrime vl REQI’ESSIDH Method
Meural Metwork Toolbox
Arguments ‘ Default ‘ MeuraSolutions for Matlab
) wika. classifiers. mS MSPrime
[ Use Calculated Output Synchronise CL—;

weka.clagsifiers. LWH
weka. classifiers. LinearRegression
Selected Variables: 3 weka. classifiers.neural. MeurallMetwork

[] Ratio Error

[] Display Result

[] Predicting Prediction Limits Directly Confidence Level 09 Add Your Own REgrESSIDn Maodel

Instance Based Method
Frototype-based method
K-nn method

Figure 3-10 Uncertainty options in UNEEC TOOL
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Figure 3-11 Hydrograph and prediction interval in training and validation periods

3.3.4 Matlab

MATLAB stands for ' MATrix LABoratory'. It is a numerical computing environment
and programming language. MATLAB is a high performance interactive software
package for scientific and engineering computation. It integrates numerical analysis,
matrix computation and graphics in an easy-to-use environment where problems and
solutions are expressed just as they are written mathematically. In addition, MATLAB
functionality can be extended by application specific toolboxes, like, partial
differential equation, genetic algorithm and direct search, statistics, neural network,
and matlab compiler toolbox.

MATLAB was used to link operate GLOBE with SWAT as an external application,
ad for generate sets of parameters to use Monte Carlo and GLUE calibration methods.
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4 Nzoia case study

4.1 Introduction

The study catchment is in the western part of Kenya. This country is about as large as
France is and situated in East Africa between 5°N and 5°S. It has a very diverse relief
with a low coastal plain on the Indian Ocean shore, extensive inland plateau regions
between 915 m and 1,500 m and several mountain ranges and isolated peaks such as
Mount Kenya, which rises to 5,200 m and has a permanent snowcap. It is bordered on
the west by Uganda and the shores of Lake Victoria.

The catchment under studying as written before is in the western region of Kenya
where most of this region is highlands on side of the eastern Rift valley, extending to
the Ugandan border. It is the most densely populated part of the country and contains
the most productive agricultural land. So, Nzoia River has been selected to study the
uncertainty of hydrological models results. This river is also of international
importance as it contributes enormously to the shared waters of Lake Victoria. It lies
within the south-Eastern part of Mt Elgon and the western slopes of the Cherangani
hills.
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Figure 4-1 Nzoia catchment
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Many other rivers feed the Nzoia before it discharges into Lake Victoria. The major
ones are Koitogos (Sabwani), Moiben, Little Nzoia, Ewaso Rongai, Kibisi, Kipkaren
and Kuywa. Other tributaries are Chwele, Khalaba, Lusumu and Viratsi .

This Basin lies between latitudes 1°30’N and 0°05’S and longitudes 34° and 35° 45’E
see Figure 4-2 . It originates from Cherangani Hills at a mean elevation of 2300 m
above sea level (asl) and drains into Lake Victoria at an altitude of 1000 m (asl). It
runs approximately South-West and measures about 334 km with a catchment area of
about 12,900 kme, with a mean annual discharge of 1800 x 10° m: see

Figure 4-2 Satellite image for Nzoia River
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From the geology point of view, Nzoia area like most of western Kenya, characterized by
Archean granite/greenstone terrain in along Lake Victoria (Schliiter, 1997). See
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Figure 4-3 Geological map of Kenya(Schlfter and Trauth, 2006)
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The population within the Basin is more than 3 million comprising of Bantu and
Nilotes see Figure 4-5.
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Figure 4-4 Population density in Kenya

On the climate side, Although Kenya lies athwart the equator; annual rainfall over
most of the country is surprisingly low and rather variable from year to year. This is
because the inter-tropical belt of cloud and rain passes rather quickly across Kenya in
April and October and because the predominant seasonal winds, the north and south
monsoons as they are called in East Africa, have a track parallel to the coast and have
already passed over large areas of land before reaching Kenya.

So, The climate of the Basin is mainly tropical humid characterized by day
temperatures varying between 16 °C in the highland areas of Cherangani and Mt.
Elgon to 28° C in the lower semi-arid areas on annual basis. The mean annual night
temperatures vary between 4° C in the highland areas to 16° C in the semi-arid areas.
Mean annual rainfall varies from a maximum of 1100 to 2700 mm and a minimum of
600 to 1100 mm. The catchment experiences four seasons in a year as a result of the
inter-tropical convergence zone. There are two rainy seasons and two dry seasons,
namely, short rains (October to December) and the long rains (March to May). The
dry seasons occur in the months of January to February and June to September.
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4.2 Data preparation

Because SWAT is a distributed physically based model, it needs a huge amount of
information about weather, soil properties, topography, vegetation, and land
management practices occurring in the watershed. In the following part, there is a
catchment's data description and some descriptive statistics about it.

Input data for SWAT assembled with the SWAT Arc View Interface. SWAT model
input data for topography were extracted from a digital elevation model (DEM) and
Figure 4 displays the elevation information for the watershed after delineating the
watershed, contouring the surface and predicting the stream flow paths.

421 Topographic data

For the soil properties, a shape file with all the available soil characteristics loaded
into SWAT. In addition, the land use added to the model, there are two figures (7,8)
displays the land use classes distributions and it distribution map.

For the weather data there are 32 Rainfall stations with available recorded data from
1960 until 2004, also there are four temperature stations with temperature data for
years. Finally there is a recorded out flow discharge at the out let of sub-basin 29 as

shown in figure 5.

0510 20 30 40Kilometers

Figure 4-5 Nzoia Catchment topographic map
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4.2.2 Soil types data

Table 4-1 Soil classifications map

Ro Uhi2 B2

Umi6
Uh3 B10
Uh18
B11
M5
M9
Uh10
Um17

L24

Figure 4-6 Soil classes percentiles in Nzoia watershed
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4.2.3 Land use data
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Table 4-2 Land cover and plant codes

Class Land use % Area
RFHC Rainfed herbaceous crop 60.73
FRST Forest-Mixed 15.93
CORN Corn 5.81
SHRB Closed and open shrubs 4.63
FRSD Forest-Deciduous 3.18
SWHT Spring Wheat 3.11
HERB Closed and open herbaceous 3.03
RFSC Rainfed shrub crop 1.12
WETL Wetlands-Mixed 0.86
RFWC Wheat 0.59
WETT Woody and shrub temporary 0.39
IRHC Irrigated herbaceous crop 0.37
FRSE Forest-Evergreen 0.11
URMD Urban 0.11
WATR Water 0.03
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Table 4-3 Land use classes percentiles in Nzoia watershed

424 Temperature data

Temperatures over much of Kenya are subtropical or temperate, because of the
reduction of temperature with altitude, and are similar to those in California rather
than those elsewhere in equatorial Africa. Only the coastal lowlands experience the
constant high temperatures and humidity associated with equatorial latitudes. Within
the study area, there are four-temperature gauge stations have been used to the
temperature data, but unfortunately, many data are missing. These stations are
kakamega (average 27°c), kisumu (average 23.3°c), Kitale (average 25.9°c), Eldoret
(average 18.4°c).

Table 4-4 Temperature data records
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4.2.5 Rainfall data

There are data collected from 32 rainfall stations in the area of the Nzoia. Only 15 of
those fall inside the watershed. Therefore, those 15 stations’ data are the only used in
rainfall analysis. Because SWAT calculate the rainfall on the subcatchments
according to the shortest distance between rain gage station and the center of the
subcatchment. Those station provide daily rainfall data from (1960 to 2004) In the
following table, there are some descriptive statistics on the rainfall data all over the
recorded years.

Table 4-6 rainfall data description
Station#

Min | 0.00 000 000 000 000 000 000 0.00 0.00 0.00 0.00
Mx | 150 420 650 650 480 400 290 460 420 500 720
s 037 092 207 385 428 331 398 392 2290 304 224
o 1.08 264 496 677 678 623 541 643 500 499 499

k8835039

0.00
50.0
0.56
2.09

Min | 0.00 000 000 000 000 000 000 0.00 0.00 0.00 0.00
Mx | 200 600 410 920 b&3.0 330 550 450 380 470 410
v 1056 1.13 1.34 407 440 268 398 441 245 245 1.56
o 1.71 382 335 789 795 504 636 680 494 480 325

k8834013

0.00
28.0
0.33
1.27

Min | 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
Mx | 66.3 484 60.1 450 88.0 37.7 499 527 604 100. 77.1
s 062 106 216 397 385 248 452 396 251 142 214
o 229 322 530 640 7.09 508 7.02 649 668 413 5.16

k8935158

0.00
28.0
0.33
1.27

Min | 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
Mx | 232 54.1 759 60.1 573 502 41.1 5882 525 447 530
uo|077 159 328 586 731 4.15 391 509 406 375 346
o 202 433 647 936 109 753 647 861 655 604 6.37

Kitale

0.00
42.3
1.26
4.12

Min | 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
Mx | 33.0 53.0 470 950 440 460 54.0 420 780 410 520
Mo 1081 147 254 498 4.17 334 565 508 259 173 234
o 257 387 562 984 7.17 604 865 836 694 3.67 4.83

k8935133

0.00
26.0
0.48
1.64

Min | 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
Mx | 41.0 61.0 58.0 68.0 750 43.0 41.0 51.0 810 79.0 &80
M 1.28 188 3.62 590 646 442 3.66 568 509 366 3.08
o 399 446 741 936 985 7.14 567 859 874 669 579

k8934008

0.00
21.0
0.84
2.37

Min | 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
Mx | 944 490 628 858 587 559 842 515 584 514 358
M 1.08 1.68 256 504 591 506 548 6.77 398 220 20I
o 392 413 575 821 929 819 900 999 760 513 3.9

k8935170

0.00
37.2
0.85
2.64

Min | 0.00 000 000 000 000 000 000 0.00 0.00 0.00 0.00
Mx |31.8 49.8 55.1 48.1 48.1 560 48.0 690 448 765 722
M 1.39 2585 333 620 7.61 374 557 6.18 b17 415 3.55
o 380 575 709 887 982 727 753 10.1 756 7.69 7.0I]

k8934060

0.00
55.5
1.33
4.08

Eldoret Min | 0.00 000 000 000 000 000 000 0.00 0.00 0.00 0.00
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Mx

28.0
0.82
222

55.0

1.52
3.89

51.0
242
5.71

81.0
5.32
10.2

49.0
4.21
7.64

56.0

3.74
7.27

48.0
5.57
7.53

69.0

6.18
10.1

30.0

213
5.17

38.0

1.69
3.45

63.0

251
5.18

24.0
0.62
2.08

k8934130

Min
Mx

0.00
82.0
248
6.87

0.00
80.0
293
6.69

0.00
80.0
4.99
10.5

0.00
100.
8.93
13.9

0.00
73.0
8.75
11.3

0.00
73.0
7.25
10.4

0.00
60.0
6.29
9.37

0.00
120.
8.58
11.3

0.00
80.0
5.84
9.10

0.00
74.0
4.16
741

0.00
37.0
3.57
6.59

0.00
45.0
1.64
5.01

K8935010

Min
Mx

0.00
29.3
0.89
2.46

0.00
81.3
1.66
4.54

0.00
46.9
2.82
5.47

0.00
55.4
6.88
9.14

0.00
42.5
4.59
6.66

0.00
51.6
261
5.05

0.00
50.5
3.49
5.17

0.00
40.0
4.53
6.95

0.00
45.1
1.92
4.04

0.00
30.6
2.14
3.95

0.00
53.5
3.05
5.84

0.00
24.5
1.13
3.06

kakamega

Min
Mx

0.00
67.0
2.89
7.76

0.00
42.0
3.58
7.61

0.00
80.0
491
9.73

0.00
74.0
8.46
12.6

0.00
52.0
8.03
9.86

0.00
73.0
6.12
10.1

0.00
84.0
5.96
9.06

0.00
74.0
6.97
10.3

0.00
62.0
5.90
9.22

0.00
52.0
4.41
7.24

0.00
65.0
4.46
8.11

0.00
57.0
2.36
6.15

k8934059

Min
Mx

0.00
50.0
2.00
5.17

0.00
54.0
2.15
5.31

0.00
90.0
4.93
10.3

0.00
85.0
8.96
13.2

0.00
58.0
8.11
11.2

0.00
60.0
341
7.56

0.00
82.0
5.37
8.48

0.00
63.0
4.82
10.2

0.00
75.0
5.00
9.29

0.00
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The following figure displays that there is a double rainy peaks in the summer in
months April and August with minimum rain in winter season.

In the figures Figure 4-8 and Figure 4-9, the spatial distribution of the rainfall

average monthly data over Nzoia watershed.
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Table 4-7 Average yearly rainfall
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February

Figure 4-7 Monthly rainfall spatial distribution (Jan.-Jun.)
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770

October November December

Figure 4-8 Monthly rainfall spatial distribution (July-Dec.)
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4.2.6 Observed flow data

29 years of observed flow data was measured in a flow station at outlet of Nzoia river
(Figure 4-10) these data are valid from 1970 to 1998. Unfortunately, flow data after
mid 1985 have a lot of missing values. So, calibration periods selected to be from

1968 to 1979 with two years worming up. while the validation period selected from
1978 to 1984.
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Figure 4-100bserved flowtime series
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4.3 Model setup
4.3.1 Introduction

Building distributed hydrological models became more easy after the great
development in data collection techniques like remote sensing and settelites which
gives more accurate data. So, After prepare data, model setuped using SWAT
graphical user interface called AVSWAT. This model setup process as in Figure
3-4can be classified into the following main steps. First step is watershed deliniation,
which includes DEM setup, streams definition and outlet definition. Second step is
land use/soil characterization. Thisrdly, import weather data. Fourth step is creation of
inputs, which includes write all input files and modify any of them manually if
needed. last step is to run SWAT and read the outputs. In the following paragraphs
there are some discriptions to main steps of model setup.

4.3.2 Watershed delineation

This tool is an automatic procedure utilizes Digital Elevation Model (DEM) data to
delineate subwatersheds, after define some parameters by the user. Figure 4-12shows
defining DEM file, also definition of shapefile contains a digitization to study area
streams, which makes delineation processes more easy and accurate. But before
completing this procedure, user should check DEM properties Figure 4-12. This
check means select DEM projection and DEM vertical and horizontal units.
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DEM Set Up
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| c:hawswatsfaith-datahdemn Froperties

[ Focusing watershed area option

¥ Burn_in option
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Figure 4-12 Define DEM file and digitized strams

& x|
" Standard * Custom
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Figure 4-11 Projecting definition
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4.3.3 Land use and soil characterization
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4.3.4 Import weather data
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4.3.5 Creation of inputs
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4.3.6 Running the model
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4.3.7 Read model outputs
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Figure 4-25 SWAT results window
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Figure 4-26 Available data reports in SWAT

Reports menu appears when select SWAT user can show model output reports
after complete running the model, by selecting show list from,
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4.4 Model results analysis

In case of text files model, user has ability to define number of years to skip output

printing by changing NYSKIP value in (file.cio).Furthermore, user can select output

details level to be daily, monthly or yearly by changing print code IPRINT value in
(file.cio). Then After running SWAT, user can get the model outputs as map charts,

reports or database files. The most important SWAT output files are (output.std ) this

file has a summary output. (output.rch) the main channel output file contains

summary information for each routing reach in the watershed.
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4.5 Sensitivity analysis in SWAT

Sensitivity analysis is described theoretically in section 2.2 and here is a brief
description of using sensitivity analysis in SWAT model. SWAT will perform the
analysis for a predefined set of 27 variables with 10 intervals in the LH sampling.
This means that SWAT will make 280 runs to complete the sensitivity analysis.

Modeler can study sensitivity analysis using AVSWAT or manually in case of text
files based model. In first case, user should first activate "Sensitivity Analysis-
Autocalibration-Uncertainity" tools from tools menu. Then he has to select a specific
scenario and simulation to analyses the sensitivity in it. After that, user should select
if the sensitivity analysis will be for flow only, flow and sediment or flow, sediment
and water quality. After defining the observed data file, user can click on start button
to start sensitivity analysis.

72 Sensitivity Analysis Manager: Scenario: Default - Simulation: sim1

DOutput Settings: Senzitivity Analysiz:

f* Flow

" Flow + Sediments
Start

" Flow + Sediment + W ater Quality Q

Report

= | chavewatxhfaith-datahobzervedflow. bt

Obszervations File

Cloze Save |

Figure 4-27 Sensitivity analysis options

In the other case, text files based model, to apply sensitivity analysis in SWAT it is
necessary to prepare some files. The first necessary files for sensitivity analysis is
(Sensin.dat ), it specifies control variables of the LH-OAT. Second one is
(changepar.dat ), it specifies model parameters included in the sensitivity analysis, the
upper / lower bounds and its variation method. Third file contains the observed flow
after replacing the empty periods. Furthermore, ICLB value should be changed in
file.cio file into one. Sensitivity analysis results are written in details in (sensout.out )
and in summarized in (sensresult.out ). In these files the parameters are sorted
according to its affect on objective function values and model output values.

4.5.1 Sensitivity analysis results

After preparing those files, sensitivity analysis output of Nzoia watershed displays
that 10 parameters out of 27 parameters are more sensitive in controlling the flow.
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The results of analysis displayed more clearly in Figure 4-30. In addition, a detailed
description of sensitivity analysis results is listed in Table 4-8.
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Table 4-8 Sensitivity analysis results

Parameter Rank Description

CN2 1 Initial SCS runoff curve number for moisture condition II. It is directly proportional to the surface runoff.

ALPHA_BF 2 Base flow alpha factor (days). It is directly proportional to speed of land response to recharge

rchrg_dp 3 Deep aquifer percolation fraction. It is directly proportional to lateral flow

CH_K2 4 Channel effective hydraulic conductivity (mm/hr). It is directly proportional to the movement of water
from the streambed to the subsurface

surlag 5 Surface Runoff time lag (days)

GWQMN 6 Threshold depth of water in the shallow aquifer required to start the return flow (mm H2O). It is inversely
proportion to amount of base flow.

sol_z 7 Depth from soil surface to bottom of layer (mm).

canmx 8 Maximum canopy storage (mm H20).

ESCO 9 Soil Evaporation Compensation factor. It is inversely proportion to amount of evaporation.

SOL_AWC 10 Available Water Capacity (mm H20/mm soil)

GW_REVAP 11 Groundwater "revap" coefficient. It inversely proportion to the amount of water transfer from shallow
aquifer to root zone

sol_k 12 Saturated hydraulic conductivity (mm/hr).

GW_DELAY 13 Groundwater delay (days)

SLOPE 14 Average slope steepness (m/m).
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SLSUBBSN 15  Average slope length (m).

epco 16  Plant uptake compensation factor.

REVAPMN 17  Threshold depth of water in the shallow aquifer for "revap" or percolation to the deep aquifer (mm H20).
BIOMIX 18  Biological mixing efficiency

ch_ n 19 Channel Manning coefficient

sol_alb 20 Moist soil albedo.

SMFMX 28  Melt factor for snow on Jun 21 (mm/°C/day)
SMFMN 28  Melt factor for snow on December 21 (mm/°C/day)
TLAPS 28  Temperature laps rate (°C/km)

SFTMP 28  Snow Fall Temperature

SMTMP 28  Snow melt base temperature (°C)

TIMP 28 Snow Pack Temperature Lag factor

blai 28  Leaf area index for crop
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4.6 Auto-calibration

Selecting the "Auto-calibration and Uncertainty" from tools menu in AVSWAT opens
a new dialog. This dialog allows selecting the scenario and the simulation target of the
application. After that a new window will open, (Figure 4-31), in this window SWAT
gives users ability to selecting a method of updating the parameters values, it has three
alternatives (replacement by value, adding to initial value or multiplying the initial
value).

In case of text files based model, ICLB value in (file.cio) file should changed to two.
also, a new line should add to (fig.fig) file to define at which subcatchment's outlet we
have the calibration observed flow, Figure 4-30shows this line, where (a45.aut) is file
name for subcatchment 45 observed flows, it is important to replace all missing data
in (a45.aut) with negative values. Furthermore, (Changepar) file should add, this file
defines all parameters to be optimized, this file also contains these parameters
max/min values, way of changing these parameters values within calibration process,
Figure 4-31 is an example to this file.

autocal 16 136 1 O
ad5.aut

Figure 4-30define calibration data file in
(fig.fig) file

low. bound|up. bound|par |imet| HRU numbers
0.00n0 1.000 4 1 2001 Rchrg Dp

0.00o 10.000 K 1 2001 Canmx
0.00o 150.000 54 1 2001 Ch EZ
0.00o 10.000 33 1 2001 3urlag
35.000 55.000 10 1 2001 CnZ
0.000 5000.000 ] 1 2001 Gwgmn
0.00o 1.000 1 1 2001 Alpha Bf
0.00o 1.000 17 1 2001 50l Awc

Figure 4-29 example of "changepar.dat" file

PARASOL tries to optimization Multi-objectives, so it calculates Global Optimization
Criterion (GOC) In addition to objective function (see section 2.5.2 for more details).
PARASOL writes GOC values in " sceparobj.out " file,

calculates Nash-Sutcliffe when calibrate a model, using the following equation
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5 Applications of model calibration techniques

This chapter contains applications to the calibration techniques which described in
chapter 2 (except the manual calibration method due to its extremely difficult in this
case study) followed by analysis for its results. These calibration analyses utilized the
modeling tools which described in chapter 3.

Calibration period -after two years worming up- is 9 years from beginning of 1970 tell
the end of 1979. Followed by five years for validation from beginning of 1980 tell the
end of 1984.

Nash-Sutcliffe model efficiency coefficient is used to assess the calibration power of
applied model. This coefficient as described before in section 2.3, it ranges from -oo to

one, and as it increase it is better.
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Figure 5-1
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5.1 PARASOL

PARASOL method as described in sections ( 2.5.2 and 4.6) was applied firstly to
calibration model parameters because it is complemented in SWAT and almost all of
its input files are ready after completing the model and sensitivity analysis. From the
output files, model's global optimization criterion (GOC) enhanced with every model
run, Figure 5-2displays that more clearly.

Wide ranges of parameters boundaries were selected to calibrate the model initially,
then parameters likelihoods to make good GOC were calculated and drawn in Figure
5-3. These likelihoods used to modify the parameters boundaries which will help in
making faster and more accurate calibration process.
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Figure 5-2 Global optimization criterion
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Figure 5-3 Parameters likelihood values
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In previous figure, it contains of eight subfigures each one represent one of calibrated
parameters. the horizontal axe is the parameters value and the virtical one is the
liklihood value for each subrange (bin). We can understand from that figure that, for
six parameters (Rchrg_Dp, Canmx, Ch_K2, Surlag, Gwqmn and Sol_Awc ), it is
beter to reduce the parameter boundaries and make it norrow. For the runoff curve
number (cn2), it is better to make the lower boundary starts from (35 : 40). and may
be 50 is good for the upper bound. Last parameter Alpha_Bf should rais the upper
boundary and make it norrow.

Detailed output for each optimization loop is found in "parasolout.out" file. Notice
that PARASOL wrote "Lowest Nash-Sutcliff" but it means "Highest Nash-Sutcliff".
Parameter values which corresponding to the optimum solution can be found in
"bestpar.out" file.

PARASOL applied two times for model calibration. First one it was searching in wide
ranges of parameters, summary of this case results are in Table 5-1. The other case the

searching ranges became narrower around the higher likelihood values, results of this
case are presented in Figure 5-4 and summary of results is valid in Table 5-2

Table 5-1PARASOL calibration results (ordinary parameters ranges)

Parameter Lower Upper Best Notes
bound bound Value
Rchrg Dp 0.00 1.00 0.311 The model run 6356 times
Canmx 0.00 10.00 0.135 The highest Nash-Sutcliff is 0.748
Ch_K2 0.00 150.00 24.11 Found the best at the trial 6147
Surlag 0.00 10.00 0.58
Cn2 35.00 98.00 35.13
Gwqmn 0.00 5000.00 0.095
Alpha_Bf 0.50 1.50 0.98
Sol_Awc 0.00 0.50 0.266
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Figure 5-4 Global optimization criterion improvement ( case two)

Table 5-2PARASOL calibration results (modified parameters ranges)

Lower Upper Best Notes
Parameter

bound bound Value
Rchrg_Dp 0.00 0.50 0.23 The model run 3146 times
Canmx 0.00 1.00 0.06 The highest Nash-Sutcliff is

71
Ch_K2 0.00 50.00 15.25 0.713
Found the best at the trial 2854

Surlag 0.00 1.00 0.45
Cn2 25.00 50.00 25.30
Gwgmn 0.00 1.0 0.11
Alpha_Bf 0.00 1.50 1.46
Sol_Awc 0.00 8.00 8.0
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5.2 ACCO

Adaptive cluster covering (ACCO) was used in calibrating the case study model. It is
working under GLOBE and linked with swat through some MATLAB codes, for
more details please revise sections ( 2.5.3.1 and 3.3.2).

Based on the ACCO output files (ACCOL.gen, ACCOL.rst and ACCOL.his). The
calibration process by ACCO made 125 model runs in a total running time about one
hour, at the end it found that best parameter compination that make Nash-Sutcliff
value equals to 0.72.

Figure 5-5displays the improvement in Nash-Sutcliff after removing the outlier values
which came at the beginning of each searching loop.
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071 4 —
0.7 1
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0.68 f’

0.67
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0.66 -

0.65

1 10 19 28 37 46 55 64 73 82 91 100 109 118
Model runs

Figure 5-5 Model goodness of fit improvement through searching process
The optimum parameters values as estimated by ACCO in Table 5-3

Table 5-3 Best parameters values using ACCO

Lower Upper Best Notes
Parameter
bound bound Value
Rchrg_Dp 0.00 0.50 0.24 The model run 125 times
Canmx 0.00 1.00 0.23 The highest Nash-Sutcliff is
0.714
Ch_K2 0.00 50.00 38.24
Surlag 0.00 1.00 0.73
Cn2 25.00 50.00 41.00
Gwgmn 0.00 1.0 0.64
Alpha_Bf 0.00 1.50 1.41
Sol_Awc 0.00 8.00 2.73
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5.3 ACCOL

Adaptive cluster covering with local searches described before in 2.5.4. For GLOBE
user he has to select "with local search (Powell-Brent)" option under "local search in
ACCQ". Analysis of output gen file gives Figure 5-6 that displays the development of
model goodness of fit through searching process.
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Figure 5-6 Model goodness of fit improvement through searching process
The optimum parameters values as estimated by ACCOL in Table 5-4

Table 5-4 Best parameters values using ACCOL

Parameter Lower Upper Best Notes
bound bound Value
Rchrg_Dp 0.00 0.50 0.27 The model run 613 times
Canmx 0.00 1.00 0.05 The highest Nash-Sutcliff is
Ch_K2 0.00 50.00 22.292 0.742
Surlag 0.00 1.00 0.70
Cn2 25.00 50.00 34.20
Gwgmn 0.00 1.0 0.02
Alpha_Bf 0.00 1.50 1.74
Sol_Awc 0.00 8.00 0.24
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54 GA

Genetic algorithm calibration was applied to calibrate this case study model, a brief
explanation to theory of genetic algorithm optimization is found in 2.5.4. GLOBE was
used to apply this algorithm; user can control the optimization process through
number of characteristics (Figure 5-7). The population size and the maximum number
of generations are two main characteristics of those.

In order to know the effect of these two parameters on the goodness of fit, Nzoia
model was optimized using three different values of these parameters. Table 5-5
contains summary of these cases, also (Figure 5-9, Figure 5-10 and Figure 5-11)
describes the rapidity of improving the goodness of model fit in three different cases.
Figure 5-8 displays part of the "rsp' file that contains the calibration results. In Table
5-5 a summary of the results.

@ Functions and algorithms E@EJ

Functian ] Algnrithmsl Optinns] CRS

|acco| AcD | -Simplex | Mults |

Fopulation and generations Genetic algorithm
Fopulation size a0 [~ Auto {Halland 1870,
Michalewicz 1995)
Max number of generations 100
el Delay after each
Limit on the number of function evaluations {10000 MO = : u
(checked after each iteration) papulation {(ms)
Selection
Selection scheme To use good points from previous population?

" tournament selection " keep none
o fithess rank selection * keep one hest

" replace fraction of current bad points --= 0.z

Crossover and mutation

Crossover type Crassover prabability 0.5 [0.5]

" crossaver only between variables values {used anlyin

) . ) Tourmament selection)
& allow cutting through bit-coded variables

Mutation type (only narmal is applied)
(e 0.0

[0.01]
~

Termination conditions
GaToL1: stop if fractional improvement for M iterations is less than 0.00m [0.0001]

I for the previous parameter 15 [14]
GaTOLZ: stop if fractional difference between hest 0.01 0.01]
points averaged in successive generations is less than ’

GaBestAverd: fraction of points (hest) averaged i)

to calculate GaTOL2 L2t]

YWalues of algorithms' parameters given in [ ] are recommended
W OK X cancel only as initial ones. They may need to be tuned for each problem

Figure 5-7 Genetic algorithm options in GLOBE
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& final results

Total number of function evaluations: 1899
The best point in G.PIN format (8 wvars, F=-T7.Z7837E-01
A A A A A A A A A A A A A A A A A A A A A A A A A A A A

Z.32368E-01

.03656E-02

L4164 3E+00

L3BTZZE-0Z2

L 9TT703E+0L

L44841E-01

L4 3570E+00

6.42866E+00

B T B T LY

I

———————————— A11 10 kest points——-—----------

Func. xl == =3 xd =5
F=-7.27837E-01 ( Z.3Z368E-01, B8.0%656E-0Z, 2.41643E+00, 1.367ZZE-0Z, 4.37703E+01,
F=-7.27837E-01 ( Z.3Z368E-01, B8.04773E-0Z, 2.41643E+00, 1.367ZZE-0Z, 4.37703E+01,
F=-7.27750E-01 ( Z.3Z368E-01, 7.85Z41E-0Z, 1.05984E+01, 1.367ZZE-0Z, 4.37703E+01,
F=-7.27750E-01 ( Z.3Z368E-01, B8.0%656E-0Z, 1.058984E+01, 1.367ZZE-0Z, 4.37703E+01,
F=-7.27717E-01 ( Z.318EB0E-01, 9.0243ZE-0Z, 1.Z1540E+01, 1.367ZZE-0Z, 4.37581E+01,
F=-7.274084E-01 ( Z.3Z368E-01, B8.0%656E-0Z, 2.41643E+00, 1.367ZZE-0Z, 4.37703E+01,
F=-7.27443E-01 ( Z.3Z368E-01, Z.05%62E-01, 2.41643E+00, 1.367ZZE-0Z, 4.37703E+01,
F=-7.273231E-01 ( Z.3Z368E-01, Z.0535%E-01, 1.058984E+01, 1.367ZZE-0Z, 4.37703E+01,
F=-7.27ZZ4E-01 ( Z.3Z307E-01, 9.073153E-0Z, 6.22133E+00, 1.367ZZE-0Z, 4.35743E+01,
F=-T7.26472ZE-01 ( Z.3Z368E-01, 3.38786E-01, &6.22133E+00, 1.367ZZE-0Z, 4.35743E+01,

@A running time: 13 h 23 m 50.53 =

Figure 5-8 GA outputs

Table 5-5 GA outputs with diffrent controlling parameters values

Case one  Casetwo  Case three
Population size 10 50 60
Maximum number of generations 20 100 100
Best objective function value 0.723 0. 727 0.748
Total number of function evaluations 180 1899 3835
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Figure 5-9 Model goodness of fit improvement (case one)
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Figure 5-10 Model goodness of fit improvement (case two)
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5.5 M-Simplex

Brief explanation to this algorithm can be found in section 2.5.6. M-simplex was
applied using initial population size = 60, and 100 starts. Figure 5-12 displays M-
Simplex main widow in GLOBE. M-Simplex achieved 0.717 Nash-Sutcliff objective
function's value after 1414 model runs.
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Figure 5-12 Model goodness of fit improvement (M-simplex)
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5.6 Comparison between different calibration techniques results

In previous section, five alternatives calibration algorithms were applied in Nzoia
watershed model. Some of them applied many times with different characteristics.
Since PARASOL algorithm was applied first, it gave a guide about the boundary
values of model sensitive parameters, so, these boundaries has been changed for
calibration algorithms implemented in GLOBE.

Table 5-6Summary results of calibration algorithms

Calibration algorithm Best Nash-Sutcliff Number of model runs
PARASOL 0.748 6356
GLUE (random sampling) 0.717 605
GLUE (LHC sampling) 0.717 500
ACCO 0.714 125
ACCOL 0.732 613
GA (fastest) 0.723 180
GA (most accurate) 0.748 3835
M-Simplex 0.717 1414
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5.7 Model validation

Model validation is an essential step in hydrological modeling; it aims to be sure that
parameter values were estimated properly in calibration. In validation process the
model out should be calculated using parameters values as estimated in calibration
period and using observed inputs but it should be run in a time period not used in
calibration, then we can compare model output with observed stream flow.

Validation period in this case study is 5 years from beginning of 1980 tell the end of
1984. PARASOL calibration gave good results so validation used its parameters
estimation. For running validation, modeler should change ICLB value into 4 (see
section 3.1.3). And define the selected validation period in "file.cio" file.

After rerun the model with calibration results, it gave Nash-Sutcliff value for
validation = 0.714, which is good. So the model considered as well calibrated.
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6 Applications of model uncertainty analysis techniques

In this section there is a description to four uncertainty analysis applications. The
theoretical description for all used algorithms can be found in section 2.7.

6.1 PARASOL

PARASOL as mentioned before; it performs calibration and uncertainty analysis. It
utilizes results of calibration results to study uncertainty analysis. Parasol divides the
whole simulations done by SCE-UA calibration process into good solutions and not
good solutions based on Bayesian method or 2 method; User can select one of them
by changing ISTAT value in "PARASOLIN.dat" file (1= %2; 2=Bayesian), in this case
ISTAT=1 that means the threshold here calculated by y2 Statistical method. Also,
"goodpar.out" file contains the parameter values that produce these good solutions.

Now after successfully completed the calibration, the input for the uncertainty
analysis are ready. User can read Detailed or only upper and lower uncertainty
boundaries. For the detailed uncertainty analysis results user can check
"ParaSolout.out" file. Otherwise user can check "minval.out" and "maxval.out" for the
minimum and maximum discharge uncertainty boundaries.

Improvement of objective function in the good simulations is presented in Figure 6-1.
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Figure 6-1 objective function development for the good parameter sets
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Figure 6-2 displays the upper and lower boundary limits of uncertainty analysis, and

the observed flow.
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Figure 6-2 interval and observed flow (PARASOL)
Uncertainty estimation based on this method says that 23.5% of observed data falls

inside the prediction intervals, and the average width of prediction intervals is
15.6m3/s.

6.2 GLUE

A MATLAB code was written to apply GLUE (described in section 2.7.6 ) to study
uncertainty of Nzoia watershed. The following figure summarizes that code.

Start
—'{ Generate Modelin.exe ‘
L7

’ Identlfy threshold and number of runs ‘ Change model input parameters
l SWAT edit

’ Read parameters ranges ‘

Check model goodness of fit
’ Randomly generate set of parameters ’— ( Nash-Suitcliffe)

Not enough

Remove this trial

Yes

number
behavioral
trials

Save behavioral
parameter and O.F.

Figure 6-3Flowchart of MATLAB code to run GLUE
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The uncertainty analysis of GLUE results indicates that 60.7% of observed flows fall
inside the prediction intervals, and the average width of the prediction intervals is 50.8
m3/s.
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Figure 6-4 Prediction interval and observed flow (GLUE)

6.3 M-Simplex

M-simplex makes 79.25% of observed data flows fall inside the prediction intervals,
and the average width of the prediction intervals is 70.5 m3/s.
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Figure 6-5 Prediction interval and observed flow (M-simplex)
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6.4 UNEEC

This method as describes in section 2.7.9 depends on on the problem is to identify
how many past flow values and past rainfalls it is reasonable to include to the model.
AMI is a matlab code developed by (Shrestha, 2005), it computes and plots average
mutual information (ami) and correlation of time series for different values of time
lag.

The result of AMI (Figure 6-6) shows that the highest correlation between model
input and output is at no lag days. This means that it may be better to take into
consideration the input data only one day back. Q= f (R,R.1, Ri-2, Q1,Qr1, Qr2,
ET.ET., ET,, ER, ERy,). After that, the total available observed flow and its
corresponding simulated flow should be spitted into training and verification data sets.

Correlation and Average Mutual Information
T T T T T T T T T 035

0.8\ i
\ 0.25

10.2

Correlation
AMI

0.1

01 1 1 L 1 L
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Time Lag

Figure 6-6 Correlation between rainfall and model reseduals in different lag time

After running UNEEC TOOL using Fuzzy c-mean clustering method with 6 clusters
and weak classifiers M5 M5prime for analysis the uncertainty period of the data. 92%
of observed data in training period and 94 in verification period were inside the
prediction limits. Also the mean prediction intervals are 100 m3/s in training period
and 88.66 m3/s in testing period. Furthermore UNEEC TOOL provides figures for
prediction intervals and observed flow. These figures are presented in the following
two figures.
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6.5 Conclusion

By comparing results from different uncertainty analysis methods. And by knowing
that the better uncertainty analysis the one which cover more observed data without
making very wide prediction interval.

% of observed flow within Average prediction interval
prediction interval width Q (m3/s)
PARASOL 23.5 15.6
GLUE 60.7 50
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7 Conclusions and recommendations

SWAT is an easy to use and accurate physically based distributed model. When it
used under Arcview interface, user should take care when moving any project from
machine to another one, he should be attention to put project files and data exactly in
the same place, otherwise he will not be able to read or run the project.

After creating a project with SWAT, it is easy to run sensitivity analysis, calibration
and uncertainty analysis using (iISWAT), this application is explained in 3.3.1 without
the Arcview interface. But, this software is able to edit SWAT input files but it failed
to change Sol_Z values, therefore this parameters didn't calibrate in this study.

When delineate watershed, flow gages positions should be at outlet of subcatchments.

However autocalibration is fast, but with complex models which have a lot of
parameters, it is really time consuming. so sensitivity analysis give big help, it
reduced the parameters to be calibrated in this case study from 27 parameters to only
8 parameters.

The more widely parameters searching ranges, the more time needed for calibration,
to reduce this range, a likelihood distribution of the parameters with the initially
calibrated model, it helped a lot to minimize that range.

Model parameters calibration using five different methods was applied in this study
(PARASOL, ACCO, ACCOL, GA and M-Simplex). ACCO was the fastest one it was
able to achieve good objective function value (not the best one compare to the other
methods) in 125 times of model run. Also, it appeared that the difference in the final
result is not so big, but the main affective factor is the time using to get the optimum
parameter set.

Matlab provides great ability to link modeling tool (SWAT) with a powerful
optimization and uncertainty analysis tools like (GLOBE). The only comment is that
MATLAB compiler needs very big space on hard disk to compile any project to be
sure that it will work in machines that haven't Matlab installed on it.

Searching surface near the optimum values seems flat. So after achieving reasonable
objective function value, more searches will be waste of time, hence, modular should
estimate reasonable number of model runs.
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