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Abstract 

Engineering decision making could range from simple problems to selecting the site 

for a major dam. In the same time, hydrological models became essential tool in every 

hydrological study or decision support system. These models by definition are 

simplifications of reality. Nevertheless, in most of the cases models' parameters and 

input data cannot be obtained directly and accurately enough in the field. Therefore, 

uncertainty analysis becomes unavoidable in any hydrological models.  

The aim of this study was to explore different calibration and uncertainty analysis 

methods of hydrologic models. And develop necessary codes to link standard 

modeling software with external calibration and uncertainty systems. And apply new 

uncertainty analysis tool based on novel method to estimate the uncertainty using 

machine learning techniques. Finally, compare performances of these calibration and 

uncertainty analysis techniques on selected case study. 

The procedures plan through this study starts by building a distributed hydrological 

model of the Nzoia River in Kenya on SWAT software. Then, calibration process 

starts which include apply many calibration systems and link them with SWAT. After 

that the uncertainty analysis of that model will be applied using different methods. 

Last step should be comparing the applied methods and these results.  
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1  Introduction 

Decision makers in water sectors depend a lot on hydrological models. So the more 

we are certain in our hydrological models' results the more we make good decisions. 

However, most of hydrological models available today focus on models construction 

and calibration but the efforts that directed to uncertainty analysis are very limited. 

Therefore, the research question of this study is "How far we are certain in our 

hydrological models results?" Therefore, this study compares different uncertainty 

analysis techniques and applies a novel technique in uncertainty analysis.  

This thesis consists of seven chapters. The first chapter is a brief overview to some 

important definitions; also it contains the research objectives and methodology of the 

work. Then the second chapter is a literature review to different calibration and 

uncertainty analysis techniques. After that in chapter three, there are some 

descriptions for hydrological modeling software and different optimization and 

uncertainty analysis tools. The model setup comes in fourth chapter; in this chapter 

detailed description for the available data and steps to build the case study model. The 

applications of calibration methods are described in fifth chapter. While analyzing the 

uncertainty results are in chapter six. Conclusions and recommendations came in 

chapter eight. After that, there are two appendices, the first one is a manual describing 

how to link external analysis codes with watershed modeling tool. Appendix 2 

contains Matlab codes, which used through the thesis.  

1.1 Background on hydrological models 

Hydrological models became essential tool in every hydrological study nowadays. 

These models by definition are simplifications of reality and it provides a clear 

understand to the complex real situations because any hydrological system whatever it 

is small, is very complicated with the objective of explanation or prediction, see 

(Figure 1-1). Nevertheless, in most of the cases models parameters cannot be obtained 

directly in the watershed. Therefore, parameters assumption is necessary and it 

becomes impossible to have a model free of errors.  

 

Figure 1-1 The water cucle 
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Modeling includes studying the system, formulating its behavior, collecting and 

preparing data, building the model, testing it, using it, interpreting the results, and, 

possibly, iterating the entire procedure. It is very important when applying models to 

keep in mind that there is no perfect hydrological model which we could expect 

output as the same as the natural. Therefore, in the hydrological modeling progresses 

the modelers are looking for appropriate models. This means the development or 

selection of a model with a degree of sophistication that reflects the actual needs for 

modeling results. It means a parameter parsimonious model with a discrimination in 

space and time that ensures a realistic simulation or prediction of the requested 

variables.  

 

There is a variety of classification methods of the hydrological models. One 

classification divides the hydrological models into lumped models and distributed 

models. Where lumped models (easy, fast and few data needed) deal with a catchment 

as a single unit without any consideration of the spatial patterns of the processes and 

characteristics within the catchment while the distributed models (difficult, slow and 

many data needed) attempt to take account of the spatial patterns of hydrological 

response within a catchment area. Another classification divides the models into 

deterministic and stochastic models. Where the deterministic models are these 

models, which take input sequence, produce a single prediction of all its output 

variables. Figure  1-3 displays hydrological model classifications (Beven, 2005).   

Deterministic hydrological models occupy majority of model applications in 

hydrology until now. More attention should direct to the stochastic models that 

represents the model inputs in probability. This principle allows study uncertainty in 

the inputs or parameterizations or outputs, such that a given input sequence will 

produce an uncertain prediction of the output variables. Even though the uncertainties 

associated with such predictions are now widely appreciated, while another 

Systems theory

Ordinary differential equations

Numerical methods

Integral differential equations

Partial differential equation

Hydrological modeling tools 

Mathematical methods 

models 
Statistical methods 

models 

Finite difference 

Finite element

Boundary element

Boundary fitted coordinates

 

Regression analysis

Correlation analysis

Time series analysis

Stochastic processes 

probabilistic analysis

Uncertainty analysis

Data driven methods 
 

Neural networks

Fuzzy rule-based 

M5 model trees

Figure 1-2 Hydrological models classification 
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classification method based on processes described based on physical laws (physically 

based models) conversely collected data approach (data-driven models).  

1.1.1 Knowledge-driven modeling  

Knowledge-driven modeling or physically-based modeling approach is based on our 

understanding (knowledge) of the physical behavior of the hydrological processes 

which control watershed response and use physically based equations to describe 

these processes. SWAT, HSPF, MIKE-SHE, AGNPS etc. are examples of 

Knowledge-driven modeling(Abbott and Refsgaard, 1996). SWAT will be described 

in details in section 3.1. 

1.1.2 Data-driven modeling (DDM)  

In contrast to Knowledge-driven modeling, Data-driven approaches needs limited 

knowledge of the physical characteristics of the watershed hydrological processes. It 

based on mathematical equations assessed not from our understanding of the physical 

process basin but from analysis of relationship between input and output discharges, 

the simplest example is linear regression analysis. There are many benefits of using 

data-driven models like, it allow for solving numerical prediction problems, 

reconstructing highly nonlinear functions, performing classification, grouping of data 

and building rule-based systems. Therefore, during the last decade the data-driven 

models became more and more common(Solomatine and Ostfeld, 2008).  

In (Solomatine, 2002) he mentioned that machine learning is the main source of 

methods of data driven models. In fact machine learning is a subarea of Artificial 

intelligence (AI). (AI) is both the intelligence of machines and the branch of computer 

science which aims to write computer programs that can solve problems creatively; " 

hopefully to imitate intelligence of human brain". 

1.1.2.1 Machine learning 

Machine learning means giving computers ability to understand or to learn. It can be 

also defined as an area of artificial intelligence concerned with the study of computer 

algorithms that improve automatically through experience. 

Due to data driven models usually applied when there is no clean understandable 

relation between (system input and output). Machine learning uses the available data 

to discover the dependency between these input/outputs.  Then it will be able to 

predict the future systems outputs from known input data (Solomatine, 2002) 

Learning process could be classification, clustering, regression and association 

methods. This process tries to minimize the difference between system observed data 

and its simulations.  

1.1.2.2 Artificial neural networks (ANNs) 

ANN is a very common application of machine learning to model complex 

hydrological watersheds. It is becoming more and more popular in the water resources 

community. ANN can be defined as a mathematical structure that identifies nonlinear 
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relationships between input and output model variables. The traditional way of 

implementing a neural network is to train it on measured input and output data for the 

system under studying, and then verified the ANN in terms of its ability to reproduce 

another set of data for the same system (Lobbrecht, et al., 2005).  

ANN consists of a large number of measured data (samples) that are called neurons. 

These artificial neurons are devices which can receive many inputs and produce one 

output. The neuron in the training modem, it can be trained to fire (or not), for 

particular input patterns. While in testing mode, when a taught input pattern is 

detected at the input, its associated output becomes the current output. If the input 

sample does not belong to any of the trained inputs, ANN should follow some 

procedure to decide to fire or not (Price, et al., 1998).  

 

Figure 1-3 Simple example of ANN 

1.2 Background on uncertainty of hydrological models 

Decision support systems are used extensively in water management. Since the 

decision is made under uncertainty, it is also necessary to taking uncertainty of 

hydrological models into account.  

The uncertainty in hydrological models may come from simplifications in the 

conceptual model. Processes occur in the watershed but not included in the model 

(wind erosion). Processes that are included in the model but their occurrences in the 

watershed are unknown to the modeler or unaccountable like irrigation systems. 

Process not known to the modeler and not included in the model either like 

constructions of roads. Errors in the input variables like rainfall and temperature or 

errors in the very measurements we use to calibrate the model.  

Uncertainty analysis methods can be classified according to different approaches. One 

of the most important classifications is according to the reason of uncertainty. For 

example if it caused by inherently random (stochastic) behavior, the uncertainty called 

aleatoric uncertainty and this type is described with the stochastic models. On the 

Precipitation (t) 

Precipitation (t-1) 

Evapotranspiration (t) 

Evapotranspiration (t-1) 

Runoff flow 

Q(t+1) 
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other side, if the uncertainty is a result by a lack of knowledge then it referred as 

epistemic uncertainty, which include fuzziness and intervals.  

Well uncertainty analysis provides many benefits like; It is more honest to express the 

degree of certitude in hydrological models output. It enables to set risk-based criteria 

for flood warnings and emergency response. It provides the necessary information for 

making rational decisions, which enables the users to take risk explicitly into account. 

It provides additional economic benefits because of the forecasts to every rational 

decision maker and thereby to society as a whole. It helps decision-makers to use their 

own judgment more appropriately for decision making through the information that 

regarded by uncertainty (for example the confidence intervals, the probability of 

exceedance of certain levels, etc.)(Blasone and Rosbjerg).  

1.3 Research questions 

1. How can we asses the uncertainty of hydrological models? 

2. How applicable are the known uncertainty methods in hydrological modeling? 

3. How do these methods compare?  

1.4 Research objectives 

1. Understand different techniques for sensitivity and uncertainty analysis, of 

hydrological models and their calubration. 

2. Identify and analyze uncertainty through of a model using different techniques 

including a novel method based on machine learning (UNEEC) 

3. Develop necessary computer codes to link uncertainty analysis tools with a 

distributed hydrological model and to validate them by application to real-

world problems. 

4. Compare the performances of uncertainty analysis techniques in the case study 

at Nzoia River. 

1.5 Methodology 

Througt this study many software used for modelling or the uncertainty analysis or 

even to link the different used software. First of all, ArcGis used for catchment 

characteristics discovering, mapping and preseniting.  Soil and Water Assessment 

Tool (SWAT) used for Nzoia catchment modelling. Matlab and mocrosoft excel also 

esed in data discribtive statistics and model results analysis.  

The research methodology will follow the following major steps to achieve the 

objectives of the research: 

1. Reviewing of literature 

2. Build distributed hydrological model (SWAT) 

3. develop necessary codes to link the case study model with external calibration 

and uncertainty systems 
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4. Sensitivity analysis for model parameters  

5. Model calibration with different techniques  

6. Model validation 

7. Apply different uncertainly analysis techniques  

8. Compare and analysis the results from the applied calibration and uncertainty 

analysis techniques 

9. Apply new non-parametric methods UNEEC (Uncertainty Estimation based 

on local Errors and Clustering) for total uncertainty analysis 

10. Reporting writing.  
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2 Model calibration and uncertainty analysis techniques 

Parameters that used in hydrological models are not measurable in the field in most of 

the cases. Therefore, parameters estimation is essential step in almost every 

hydrological model. Process of adjusting the model parameters estimation to match 

the model behavior to the observed behavior of the watershed is called model 

calibration. Getting more experience in hydrological model calibration is main 

objective of this study as mentioned in Research objectives. Therefore, different 

calibration techniques studied in this thesis and applied on the case study. In the next 

paragraphs, there are brief descriptions to objective functions.  

2.1 Introduction 

Aim of calibration process is to find the model parameters values that minimize the 

difference between model and the reality. Therefore, researchers developed based on 

statistical equations some different statistical regression and model fitting techniques 

to measure how the simulated outputs fit the observed data. These equations are called 

objective function. Moreover, it has different values according to the selected set of 

parameters. Figure  2-2displays surfaces describe the objective function in parameter 

space, which is called “response surface”. Therefore, parameter optimization could be 

defined as the process of searching within response surface inside the allowable 

parameter ranges to achieve the minimum or maximum -as appropriate- objective 

function value(Singh and Frevert, 2002).  

Figure  2-2 shows response surface complexity increasing when function's complexity 

raise from one variable (A) into two variables (B). Therefore, selecting calibration 

technique depends on the complexity of model, which depends on number of 

parameters to be optimized. Optimizing response surface that have single 

minima/maxima are much easier than those surfaces that have multi minima/maxima.  

A 

Figure 2-1 Single & Multi objective functions 
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In addition, rainfall runoff models may have ten parameters (response surface of ten 

dimensions) which give an idea of how the calibration process become very 

complicated with distributed hydrological models.  

Optimization methods have three main classes (McCuen and Snyder, 1986). First 

class is the analytical optimization techniques, this type utilizing analytical calculus to 

derive parameters values. It provides direct solutions and gives exact solution if exist 

but it is practical only in case of simple models. The Second technique is the 

numerical optimization, which evaluate the parameters numerically as by using finite 

difference scheme. This type is more suitable in models that are more complex and 

adding parameters ranges constrains is quite easy. However, it needs a considerable 

number of iteration so it is considered time-consuming technique furthermore, the 

answers are usually not exact and it is necessary to estimate initial values for the 

parameters. Third one is subjective optimization techniques. This type is a trial and 

error process that depends mainly on the user experience. In addition, it is most often 

used with very complex models that involve many unknown.  

2.2 Sensitivity analysis 

Sensitivity analysis means a method to determine how the hydrological models 

outcomes are sensitive to its parameters. Furthermore, most of hydrological models 

now a day became very complex and over parameterised. Therefore, the sensitivity 

analysis is essential in most of hydrological models. In regards to reduce the number 

of parameters that calibrated and hence it reduces a lot the modelling time.  

2.2.1 Manual sampling  

It is the most simple sensitivity analysis method. It starts to change parameters values 

and check the effect on the model results. Then mark the parameters that cause 

significant changes to the total results with small variation in its values are sensitive.  

This method is applicable for the simple models that have few parameters like simple 

lumped models. But the sensitivity analysis processes become too complex to done 

manually. Because of that, there are now many automatic techniques impeded in the 

hydrological models packages to do study the hydrological models. In fact, those 

techniques uses the same idea by running the model several times with different sets 

of parameters values then the program calculates the degree of final results changing. 

Then the analysis sorts the used parameters according to that sensitivity.  

2.2.2 Latin hypercube sampling 

The statistical method of Latin hypercube sampling (LHS) was developed to generate 

sets of model parameter values with specific distribution. And it is often applied in 

uncertainty analysis. Figure  2-7 is an example of two parameters Latin square and it 

shows LHS principle which starts by determine each parameter domain and divide it 

into reasonable number then generate only one sample in each row and each column 

(van Griensven, 2005). 
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Figure 2-3 Latin hypercube sampling intervals in case of parameters values that 

follow normal probability distribution  

2.2.3 One factor at a time algorithm 

The sensitivity analysis method that implemented in SWAT depends on joining Latin 

hypercube sampling with One-factor-At-a-Time approach to form what known by 

(LH-OAT). LH sampling depends on the principals of Mont Carlo (MC) sampling but 

it eliminates the most deficit thing in MC by stratifying the parameters ranges into a 

reasonable number of sub-ranges. That allows efficient and full parameters 

representing without need to big number of runs as MC. that is because the statistical 

origin of LH depends on Latin square, which is a square grids that contains one and 

only one sample in each row and each column.  

The LH technique main steps could be summarizing as the following. First, we 

assume the probabilistic distribution for studied parameters and its expected range of 

values. Then we stratified this range into N sub ranges with equal probability of 

occurrence (1/N) where N equals to the number of analysis runs. In figure 17, for 

example, the parameter probabilistic distribution assumed as normal distribution and 

it stratified into 12-sub range. Therefore, when the program will run to analysis model 

sensitivity to each parameter it will run 12 times with different generated values for 
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this parameter. The second part of (LH-OAT) technique is the One-factor-At-a-Time 

sampling approach. When this approach makes samples it changes only one parameter 

each time, so it gains information about one parameter in each run. Therefore, the 

model sensitivity to different parameters can unambiguously attribute to the input 

parameter changes. However, this method has disadvantage that it is not easy to study 

the interaction parameters. The two techniques (LH & OAT) are joining by taking the 

LH samples as initial values to QAT sampling technique.  

In Table  2-1, there is an example to how OAT technique works. It starts by assuming 

initial values for all the parameters – from LH – and calculate the model response 

according to these values. Then it starts to change all the parameter values one each 

time – as in row 2 it only changed cn2 value - and calculate the model response 

according to each trial. In each trial, it compares the model response with the one that 

got from the previous trial. If the model response or the objective function developed 

after a change that means it was a right step and the model is sensitive to this 

parameter.  

2.3 Objective functions and goodness of fit estimation 

Objective function is a function that measures how model output fits with the 

observed flow data. Goodness-of-fit statistics studies these functions; it also provides 

some measures of the agreement between a set of sample observations and the 

corresponding values predicted from some model of interest. Some of these equations 

are listed in the following table.  

Where in all previous equations: 

 Qobs observed flow time series 

Qsim simulated flow time series 

N number of flow data in the time series 

 

Sample parameters Trial 

CN2 sol_alb gwqmn Sol_k 

Model  

output 

1 A1 B1 C1 D1 50 

2 A2 B1 C1 D1 80 

3 A2 B2 C1 D1 60 

4 A2 B1 C2 D1 70 

5 A2 B1 C1 D2 90 

Most sensitive parameters are (CN2 and  Sol _k) 

Table 2-1 OAT explanation example 
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Table 2-2 Some common objective functions 

 

Objective 

function 

Method Equation notes 

Mean square 

error (MSE) ( )∑ −
n

simobs QQ
n 1

21

 

Zero means perfect 

model 

Root mean 

square error 

(RMSE) 
( )∑ −

n

simobs QQ
n 1

21

 

Zero means perfect 

model 

mean absolute 

error (MAE) ∑ −
n

simobs QQ
n 1

1

 

Zero means perfect 

model 

Sum of the 

squares of the 

residuals (SSQ) 

( )∑ −
n

simobs QQ
1

2

 

The smaller is, the 

better. 

sum of the 

squares of the 

residuals after 

ranking (SSQR) 

( )∑ −
n

simobs QQ
1

2

 

the time of occurrence 

of observation of 

simulation is not 

accounted  

Correlation 

Coefficient (r) 
∑∑

∑
−−

⋅−⋅

2222

simsimobsobs

simobssimobs

QnQQnQ

QQnQQ

 

R indicates the degree 

of linear relationship 

between observed and 

simulated flow. It lies 

between -1 and +1.  

+1 indicates perfect 

linear relationship 

Coefficient of 

determination 

(r2) 

 

2

2222 













−−

⋅−⋅

∑∑
∑

simsimobsobs

simobssimobs

QnQQnQ

QQnQQ

 

it is simply the square 

of the correlation 

coefficient, r.  
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The selected objective functions in modeling software used in this study are, Sum of 

the squares of the residuals (SSQ) and the sum of the squares of the difference of the 

measured and simulated values after ranking (SSQR).  

to measure the goodness-of-fit between observed and simulated stream discharge, 

SWAT uses the Nash-Sutcliffe coefficient(Nash and Sutcliffe, 1970). The following 

equation summarize this method 

( )

( )∑

∑

=

=

−

−

−=
T

t

o

t

o

T

t

t

m

t

o

QQ

QQ

E

1

2

1

2

1  Equation 2-1 

Where  

t

oQ    Observed discharge at time t  

t

mQ    Modeled discharge at time t, and 

o
Q    Average observed discharge. 

Nash-Sutcliffe efficiencies E ranges from -∞ to one, E=one corresponds to a perfect 

match of modeled discharge to the observed data. An efficiency of zero (E=0) 

indicates that the model predictions are as accurate as the mean of the observed data, 

whereas an efficiency less than zero (-∞<E<0) occurs when the observed mean is a 

better predictor than the model. 

2.4 Searching methods 

Model calibration is typically a form of optimization searching process. It starts by 

assuming an initial set pf variables and calculate its corresponding objective function 

value. Then repeat this processes many times after changing parameters values 

assumption tell get the most proper parameter value. Optimization strategies are 

distinguished based on its way of changing parameter values from iteration to the 

next.   

Model optimization is to search within the allowed ranges of parameters values in 

order to determine the best solution. Best solution is the parameters combination that 

optimizes the selected objective function. Optimization searching strategy is changing 

according to model level of complexity. These strategies are classified into local 

search methods and global search methods. The following paragraphs have some 

detailed information about these methods. 

2.4.1 Local search method 

Local search methods are used for unimodal functions (functions that have only one 

maximum or minimum within allowable parameters ranges). The searching process 

starts by initial guess of a set of parameters and calculate the corresponding objective 
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function to stand at an initial on the response surface. 

Then change parameters values slightly to move on 

the response surface from point to its neighbor. Then, 

repeat these searching steps tell find a set of 

parameters that produce optimum value in the 

response surface.  

The main questions while moving on the response 

surface are a) which direction should we move. b) 

How far should move in that direction. c) How to decide 

that no more better points on the response surface .based 

on answers of these questions strategies, local search methods can be classified. 

Direct search methods and gradient search methods are the main classes of local 

search optimization. The difference between these two methods that the first one takes 

decision based on objective function values only while the second method uses both 

of objective function values and gradient. 

2.4.1.1 Direct search methods 

The general strategy of direct search methods is to start at initial point and calculate 

the objective function values at different direction and step sizes, then selesct one 

which has best optimization then repeat it tell achieve point where searching process 

will not be able to find better points any more.  

Examples of direct search methods are the Nelder-Mead Simplex method, Hooke and 

Jeeves' pattern search, the box method, and Dennis and Torczon's parallel direct 

search algorithm. In next section, there is a description to the first method (simplex 

method) where it is the theoretical base of Parasol technique, which implemented in 

SWAT and applied in this thesis. 

2.4.1.1.1 Simplex method 

Simplex method also called Nelder-Mead method or downhill simplex method. It uses 

only function values, without calculate the derivatives. Simplex is the geometrical 

figure that consists of N+1 vertices in N dimensions. For example, in one dimension 

simplex is line, in two dimensions it is a triangle and in three dimensions simplex is a 

tetrahedron.  

First step in this method is to calculate function values at random (N+1) points or 

vertex.  Then it identifies vertices, and ranks them according to its objective function 

values. Next step is to calculate simplex centroid after excluding the worst vertex. 

After that, it moves the worst vertex to the opposite side through simplex centoid, the 

distance between old vertex point and the reflected point may be equally on both sides 

of centroid , expanded or even shrinkage,  shows some of these alternatives, where at 

vertex (W) the worst function value. R = reflection, E = expansion, C+ = positive 

contraction and C- = negative contraction (Figure  2-6). 
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Furthermore (Figure  2-7) shows a method for finding the optimum values of 3-D 

function, where a 2-D simplex proceeds by reflection, contraction, expansion or 

shrinking along the surface. Calculating how much the function developed each 

iteration determine when iterations should be stopped. (Gershenfeld, 1999) 

2.4.1.2 Gradient search methods 

Gradient search methods don't use only function values but it also use function 

gradients to find the optimal direction of search.. Steepest descent, continuous 

descent, Newton raphson and polack ribiere are all types of gradient search methods. 

The next equation is the base of most gradient methods. 

III Θ∇⋅Α⋅−Θ=Θ + ρ1  Equation 2-2 

Where  

1+Θ I  Initial parameter vector 

IΘ    New parameter vector 
ρ      Step size parameter 
Α      Square matrix 

IΘ∇  Function gradient matrix 

 

Figure 2-5 Worst vertex movements options in simplex method 
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2.4.2 Global search methods 

Global optimization methods are those algorithms, which tries to optimize multi-

modal functions. These optimization methods are classified into deterministic and 

probabilistic approaches; In addition, there is a combination of them. The first 

approach is used when there is a clear relation between model parameters and model 

output, which is very rare case in real problems, therefore, most of the applicable 

methods are stochastic or a combination of deterministic and stochastic methods. 

(Solomatine, 1995) grouped the global optimization methods into five groups, first 

one contains the space covering techniques; second contains the random search 

methods; third group is for the multistart methods which based on multiple local 

searches; genetic algorithms are the fourth group; all the other methods are considered 

in the fifth group. 

2.4.2.1 Space covering technique 

The search space is divided into number of subsets and the objective function is 

evaluated in each sunset. Then the parameter value which corresponding to the best 

objective function will be selected. in case of use the previously selected parameters 

values and its corresponding objective functions values to choose the next parameter 

value the algorithm is called a sequential covering algorithm (Solomatine, 1995). 

2.4.2.2 Random search methods 

(Solomatine, 1995) mentioned three searching subgroups under random search 

techniques. These are pure random search methods, adaptive random search and 

controlled random search.  

The pure random search (also called Monte Carlo search) is the simplest stochastic 

global optimization method.  It generates model parameters sets assuming it have 

uniform distribution and calculates its objective functions, after net a stopping criteria 

it assumes the best objective function as the global optimum value. The main 

disadvantage of pure random search is that it needs large number of function 

evaluations; this number also grows exponentially with number of parameter increase. 

so, it was improved to use the known objective function values into consideration 

which gives parameters generation a sequential manner, this developed method called 

(adaptive random search) (Solomatine, et al., 1999). 

2.4.2.3 Multistart local search methods 

These methods came from develop the pure random search methods. It uses each 

generated point as a start point of a local optimization procedure. Then it applies local 

search procedure several times. The best found points of local search are most 

probable to have the global optimizer.  

Multistart searching is repetition of two main steps tell achieving a stopping criterion. 

The first step is to generate a random points within a given accepted parameter ranges 

then use these points as a start points for local search process. After achieving the 

stopping criterion, the best local search is taken as a global optimum. Multistart is also 
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not efficient where many start points can lead to the same local optimum.  (Arora, 

2004) 
 

2.4.2.4 The shuffled complex evolution algorithm (SCE-UA) 

It is a global optimization method based on the use of multiple simplexes. SCE-UA 

developed originally as part of a doctoral dissertation in University of Arizona 

(Duan).  SCE-UA is as an effective, robust, flexible and efficient algorithm because 

(a) it is a combination of deterministic and probabilistic approaches. (b) It evolutes 

model parameters values in direction of global optimization. (c) It is a Competitive 

evolution algorithm. (d) It shuffled the complexes(Singh, 1995).  

SCE-UA uses two methods to select good simulations. First method is χ2 statistics, it 

looks for model simulations that make objective functions lies around the optimum 

value within selected confidence interval. Bayesian statistics is the second method, 

which defines high probability regions. 

First step of SCE-UA, after user define parameters probability distributions or assume 

it uniform, is to sample points randomly within the parameter space and compute the 

function value or criterion at each point.  Second step, is to sort sampled points 

according to criterion value from best to worst. Third step is partitioning into 

complexes, if user wants to have N complexes, ranked data should partition into N 

parts and each complex should has points from every part to be a mix of good/bad 

points as the work idea of simplex method. Fourth step is to evolve each complex 

independently to get the best points in each complex. Fifth step is to shuffle the 

complexes, in order to get the global optimum and to eliminate falling into local 

optimum it remix the complexes by shuffling some points from each complex to the 

others. Last step is to check if the searching process satisfied the convergence criteria, 

if not, a new random population will be generated and SCE-UA will repeat the whole 

steps (Duan, et al., 1992). 
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2.5 Calibration techniques 

For real case studies calibration should done using global searching algorithms. Four 

global searching algorithms will discuss in the following sections in addition to quick 

look at manual calibration. The well-calibrated model has similar overall water 

balance as the observed flow. In addition, it should have similar shape of the 

hydrograph, peak flows and low flows. In addition, model prediction should have low 

uncertainty and negligible bias. 

2.5.1 Manual calibration 

For the manual calibration, it is very difficult in this case because the model as a 

SWAT models has over three hundreds of parameters and the watershed subdivided 

into 164 hydrological response units. 

2.5.2 Parameter solution (PARASOL) 

PARASOL is an acronym for (Parameter Solutions method), it is a model calibration 

and uncertainty analysis method. It is a multi-objective calibration based on adapting 

the shuffled complex evolution algorithm SCE-UA (described in section 2.4.2.4) for 

multi-objectives problems and for large number of parameters; it minimizes the global 

optimization criterion (described in section 2.3.2.32.5.2.1below). PARASOL starts by 

model calibration then it uses the behavioral simulations for uncertainty analysis.  

2.5.2.1 Multi-objective optimization 

Most realistic optimization problems, particularly distributed hydrological models, 

which may need to optimize water discharge, sediment transport, nutrient and 

pesticide movement. Therefore, it requires simultaneously optimization of more than 

one objective function. Therefore, instead of using SSQ’s or SSQR’s (section 0) 

SWAT utilizes a method based on the Bayesian theory, which assumes normal 

distribution of the residuals. It combines several SSQ’s or SSQR’s into Global 

Optimization Criterion (GOC). In this method, the sum of the squares of the residuals 

gets weights that are equal to the number of observations divided by the minimum. 

The following equation explain this method. 

∑
=

=
n

i i

ii

SSQ

nobsSSQ
GOC

1 min,

*

 Equation  2 5 

Where: 

SSQi the sum of the squares of the residuals for optimized object i. 

nobsi the number of observations for optimized object i. 

SSQi,MIN the sum of the squares at the optimum for optimized object i. 

The probability of given parameter set to be the optimum solution is related to the 

GOC according to Equation  2-6 

( ) [ ]GOCYP obs −∝ exp|θ
 Equation  2 6 
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2.5.3 Adaptive cluster covering (ACCO)  

ACCO approach clusters a set of points into subregions with reduction of samples. It 

applies clustering only once, and then it covers the subregions. ACCO strategy is 

based on four principles Clustering, Covering shrinking subdomains, Adaptation, 

Periodic randomization (Solomatine, 1999). These four principles are described here.  

2.5.3.1 Principals of ACCO strategy 

• Clustering  

Clustering is a process of dividing big group of things into groups (clusters); each one 

contains things which have similar characteristics and different than other cluster. For 

hydrological models calibration, after generating sets of parameters randomly or with 

any distribution and calculate its corresponding objective function values, clustering 

is used to split parameters population points into regions according to its fit with 

observed flow. So, ACCO can identify the most promise parameter values to make 

more searching around it which saves too much time. These promised cluster will 

considered as subdomains for more global optimization.  

• Covering  

Covering is to cover the clusters with generated sets of points and calculate the 

objective function values at these points to determine its characteristics. The covering 

type could be randomly or have grids shape. ACCO uses the pure random approach. 

Covering procedure will repeated many times in the clusters that are progressively 

reduced in size. 

• Adaptation  

Adaptation procedures shifts and shrink the search subregions, also it changes the 

number of points of each covering. This process updates its algorithmic behavior 

based on new information came with model running.  

• Periodic randomization 

Due to generating parameters in probabilistically there is a possibility to miss the 

global optimum, so, ACCO re-randomize the initial populations to solve the problem 

several times or use re-randomization at intermediate steps. 

2.5.3.2 Strategy of ACCO 

In this section, the main steps of optimization using ACCO are described for two 

parameters (CN2 and ALPHA_BF) calibration model.  

First step is the initial sampling, it generates randomly with uniform distribution an 

initial population of N points from the practical parameters ranges. In the second step, 

the objective function values at each point of the population is calculated, after 

identify the best values the number of population will be reduces, so, this step called 

(initial reduction). Third step (initial clustering) is an application to "clustering 

principle"; it splits the population into number of clusters, and keeps dimensions of 

these clusters. Fourth step, for each cluster, it generates more points inside cluster 
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under studying, evaluate the objective function at every point then it removes the 

worst points, these processes what we called before "Covering ". After covering, there 

is population adaptation, where ACCO identifies the center of attraction of the cluster 

(it could be the best point) then it shifts the whole cluster so its center coincide with 

the center of attraction. Next step tries to reduce the size of the region by use smaller 

cluster dimensions surrounding the same center of attraction. All these steps should be 

repeated many times for each cluster tell meet stopping criteria.  
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2.5.4 Adaptive cluster covering with local search (ACCOL)  

ACCOL have are two phases: in the first one it applies ACCO to find several regions 

of attraction within parameters space. For the second phase ( local search ) it uses the 

points that generated from the ACCO phase and apply Powell-Brent search to find 

accurately the minimum. 

2.5.5 Genetic algorithm (GA)   

This algorithm became one of the most successful optimisation techniques that apply 

in hydrological models which based on fuzzy-logic and artificial neural networks. it 

tries to emulate a biological process that each child is a copy of its parents plus a 

variation. so, GA try to use the generated set of parameters of each model run 

(parents) to generate a new set of parameter (child)(Kamp and Savenije, 2006). 

(Holland, 1975)wrote that GA is based on the principle of the survival of the fittest 

which tries to retain genetic information from generation to generation. furthermore 

he mentioned that the major advantages of GA algorithms are their broad 

applicability, flexibility and their ability to find optimal or near optimal solutions with 

relatively modest computational requirements(Gupta, et al., 1999).  

Genetic algorithm starts by generate a random population from parameters to be 

calibrated, and calculate the objective function values according to these parameters 

guess. Secondly, select a group of the population which have better objective function 

values, these selected population points (parents) will have more probability to 

generate next generation (childs). Third step called crossover, it is a process of 

exchange information between selected population points to generate new childs. 

Mutation is the fourth step; it is used to randomly change the value of single point 

within the population. Selection, crossover and mutation should be repeated tell 

elapse predefined number or met a stopping criterion. 
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2.5.6 M-simplex calibration algorithm 

M-simplex is one of the multistart local search methods (see section 2.4.2.3). So, it 

consists mainly of three steps. Firs one is to generate a set of random points and 

evaluate the objective function at each of these points. Second step called reduction; it 

reduces the initial set by choosing some points which have lowest value of objective 

function. Last step is the local search; it launches the local search procedures starting 

from each of the selected points. In M-simplex, local search process depends on the 

downhill simplex method (see section 2.4.1.1.1). The global optimum point is the best 

point results from local search.  

2.6 Conditions of good calibration 

Well-calibrated model should have (a) water balance close to measured one (b) 

simulated hydrograph shape similar to observed hydrograph (c) similarity with 

observed peak flows with respect to timing, rate and volume (d) similarity with 

observed low flows.  

(Madsen, 2000) presents the following four equations to test if model achieved these 

goals. The first equation tests the condition (a) by measuring the overall volume error. 

Second one tests the shape of the simulated hydrograph. Third equation is a test of 

model goodness of fit with the peaks flow events. Last equation tests model goodness 

of fit with low flow events.  
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Where: 

Qobs,i   the observed discharge at time i,  

Qsim,i  the simulated discharge,  

N  the total number of time steps in the calibration period,  

Mp  the number of peak flow events,  

Ml  the number of low flow events,  

nj the number of time steps in peak/low flow event no. j,  

u  the set of model parameters to be calibrated, and  

wi a weighting function. Peak flow events are defined as periods where 

the observed discharge is above a given threshold level. 

2.7 Uncertainty analysis techniques 

With increasing of interest of analysis the uncertainty in watersheds hydrological 

models many methods have been developed to estimate model uncertainty. Choice 

between these methods is according to the level of models complexity. In (Shrestha 

and Solomatine, 2008) these methods was classified into six main classes. Analytical 

methods, approximation methods, sampling based methods, Bayesian methods, and 

methods based on analysis of the model errors. 

The next section is a brief explaining to the uncertainty analysis classifications. After 

that, there are some descriptions to some common methods to estimate uncertainty in 

hydrological models, most of these methods applied on a case study.  

2.7.1 Classifications of Uncertainty analysis methods 

Analytical methods compute probability distribution function of model outputs. 

And, it is applicable for simple models where the propagation of uncertainty through 
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the model is straightforward. Although of its easiness, its applicability is limited to 

models with linear summation of independent inputs. 

Approximation methods provide only the moments of the distribution of the 

uncertainty output variable. Some of approximation based methods depend on the use 

of the Taylor series expansions for propagate the uncertainty through model. 

Furthermore, the main advantage of approximation methods, that it is enough to 

propagate the moments of each probability distribution of the model inputs instead of 

the entire probability distributions. On the other side, the main disadvantages of these 

methods are, firstly, it cannot be applied to problems with discrete or discontinuous 

behaviors because the model function should be differentiable. Secondly, it is 

computationally intensive as they typically require the evaluation of second order 

(may be higher) derivatives of the model. Thirdly, although these techniques are 

capable of propagating central moment of input distributions, information regarding 

the tails of the input distributions cannot be propagated.  

Sampling based methods are the most common techniques to study the 

propagation of uncertainty. These methods involve running a set of model simulations 

at a set of sampled points from probability distributions of inputs and establishing a 

relationship between inputs and outputs using the model results. There are two types 

of sampling, the first one is simple random sampling that depends on the entire 

population and second is stratified random samples, which separate the population 

elements into non-overlapping groups called strata.  

Furthermore Sampling based methods involve complex and nonlinear model and 

capable of solving a great verity of problems. do not require access to the model 

equations. Monte Carlo Methods and Latin Hypercube Sampling methods are the 

most common sampling based uncertainty analysis methods.  

Bayesian methods utilize Bayes' theorem to estimate or update the probability 

distribution function of the parameters of the model and consequently estimate the 

uncertainty of model results. Generalized likelihood uncertainty estimation (GLUE) is 

based on Bayesian methods; it will be discussed in section (2.7.6). 

Methods based on analysis of the model errors; its idea is to analyses model 

residuals that occurred in reproducing the observed historical data. UNEEC 

uncertainty analysis methods which described in details in section (2.7.9) and applied 

in section 6.4. 

2.7.2 Measuring Uncertainty 

Two methods to measure the uncertainty amount are used in this study. The first one 

is percentage of points that fall between upper and lower prediction interval. And the 

second one is the average width of uncertainty region between those two prediction 

interval boundaries.  

First of all the prediction interval is different than the confidence interval, the first 

expresses the accuracy of model with respect to observed value. But confidence 

interval measures the accuracy of our estimate of the true regression. In real problems, 
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the prediction interval is more practical. If we need to have 90% predictive 

uncertainty, we have to calculate 5% and 95% quantiles of probability distributions of 

all possible flows values at each time step. After calculating upper and lower 

prediction limits, account number of flow observations that fall between those two 

limits, The higher this percentage the higher certain model, Figure 2-15.  

On the other hand, the mean width of the prediction interval expresses the rapidity of 

searching tool to become close to the optimum value.  
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Figure 2-15   

2.7.3 The probability theory description   

It is the most complete description and the best understood method to solve 

uncertainty problems. The chief five approaches in probability theory are described 

briefly here.  The classical approach assumes in case of finite number of independent 

outcomes the probability of an event is the proportion of occur this event to the total 

possible outcomes. The frequency approach used in case of an experiment that can be 

repeated under essentially identical conditions but the observed outcomes is random. 

The Propensity interpretation applied in cases of long recorded events repeated under 

essentially identical conditions that are difficult to release in practice. The Subjective 

approach measures our belief in probability of an event to occur. The Logical 

approach used when the outcomes are not independent and there is some implication 

between them so it uses the conditional probability as the degree of logical 

approximations. However, in most practical problems such a probability function 

cannot derive or found precisely.  

2.7.4 PARASOL  

Parasol is an optimization and uncertainty analysis it is based on (SCE_UA) as 

explained in section 2.4.2.4. 
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For uncertainty analysis, ParaSol divides the outputs of SCE-UA optimization method 

into ‘good’ simulations and ‘not good’ simulations. This process could be done using 

two separation techniques. The first method based on χ2-statistics to delineate the 

confidence regions around the optimum. The second method uses Bayesian statistics 

to define high probability regions.   

2.7.5 Monte Carlo technique description   

The most known sampling method is the Monte Carlo technique.  The idea behind 

this method is to generate repeatedly a large number of realizations of model 

parameters according to (subjective) probability distributions and uncertainty bounds 

for each parameter. But to come up with these (subjective) probability distributions 

and uncertainty bounds, one must apply professional judgment after extensively 

reviewing the available literature and data. The Monte Carlo errors decreases as the 

sample size increases, but increase in computational time, which is not practical in 

many cases. There is Variance reduction techniques aim at obtaining high precision 

for MCS results without having to substantially increase the sample size. Among 

them Simple Random Sampling (SRS), generalized likelihood uncertainty estimation 

(GLUE), Latin hypercube sampling (LHS), and Monte Carlo Markov chain MCMC 

are widely used.  

In SRS, Simple random sampling is the basic sampling technique. Each individual is 

chosen entirely by chance and each member of the population has an equal chance of 

being included in the sample. In standard LHS, the distribution for each parameter is 

divided into sections of equal probability; where the number of sections equals the 

number of samples or iterations to be made in the Monte Carlo simulation. During the 

sampling, the random numbers are selected by chance within each section, but only 

one random number is chosen from each section; then once a random number has 

been selected from a section, that section is excluded from the rest of the analysis.  

The Monte Carlo application steps schematization is explained in Figure  2-17 and 

Figure  2-18 Now the model can be start running by sampling a group of parameters 

and try to give weight to each one. Repeat the previous steps many times then we will 

have a matrix of outputs according to the different values of input data and the 

generated parameters. When this matrix drawn it will form a region of expected 

output values through the whole inputs and parameters values.  
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Figure 2-16 Monte Carlo main steps 
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Figure 2-17 
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2.7.6 Generalized likelihood uncertainty estimation (GLUE)   

The fourth technique that will discuss here is the Generalized Likelihood Uncertainty 

Estimation (GLUE). This method developed by (Beven and Binley, 1992) as a general 

strategy for model calibration and uncertainty estimation in such complex models. It 

became one of the most widely used methods for simultaneous calibration and 

uncertainty estimation in the water resources and environmental modeling. But the 

main drawback of this technique is the huge number required of model 

simulations(Blasone, et al., 2006). 

Due to it is not possible to estimate that any particular set of parameter values will 

represent a true paradigm, GLUE measure of how well the model conforms to the 

observed flows by assessment the likelihood of parameter sets, where likelihood is the 

probability of achieve an observed flow given a set of parameters, then it assigns a 

likelihood weight for each parameters sets.  

GLUE generates a combination of flow hydrographs given generated sets of 

parameters values. Then it chooses the set of parameters that gives the best fit with the 

observed data and estimates the uncertainty bounds around the optimum solution. 

It runs models with a large number of Monte Carlo procedure simulations with 

different parameter sets, sampled from proposed (prior) distributions, and inferring 

the outputs and parameter (posterior) distributions based on the set of simulations 

showing the closest fit to the observations.  

A GLUE analysis consists of the following three steps:  

1. select a function to represent the model goodness of fit with the observations. 

2. A large number of parameter sets are randomly sampled from the prior 

distribution and each parameter set is assessed as either “behavioral” or “non-

behavioral” through a comparison of the “likelihood measure” with the given 

threshold value.  

2) Each behavioral parameter is given a “likelihood weight” according to: where N is 

the number of behavioral parameter sets.  

3) Finally, the prediction uncertainty is described as prediction quantile from the 

cumulative distribution realized from the weighted behavioral parameter sets.  

In literature, the most frequently used likelihood measure for GLUE is the Nash-

Sutcliffe coefficient (NS), which is also used in the GLUE06 program:  
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 Where n is the number of the observed data points, and yti and yti (.) represents the 

observation and model simulation with parameter  at time ti, respectively, and y is the 

average value of the bservations.  
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2.7.7 Sequential Uncertainty Fitting (SUFI-2)  

Sequential uncertainty fitting procedure (SUFI-2) is a stochastic procedure; it 

performs calibration and uncertainty analysis. Parameter uncertainty is expressed as 

ranges and is sampled using a Latin Hypercube procedure. Two factors quantify the 

goodness of calibration and uncertainty analysis. The first one is the P-factor, 

quantified the percentage of data captured by the 95% prediction uncertainty 

(95PPU), and the other one is the R-factor, which quantifies the average thickness of 

the 95PPU.it is good to notice that the ideal values for p-factor and d-factor are 1 and 

0, respectively. However, this is usually unattainable. But reasonable values are more 

likely to be around p-factor > 70% and d-factor < 1.2. 

We do the SUFI2 analysis by being sure that “most” of the measured data is 

“respected” or “bracketed” by the 95% prediction uncertainty (95PPU). The 

percentage of the measured data that is bracketed by the 95PPU as well as the 

thickness of the 95PPU quantifies the strength of the calibration. In SUFI-2, 

parameter uncertainty accounts for all sources of uncertainties such as uncertainty in 

driving variables (e.g., rainfall), conceptual model, parameters, and measured data. 

The degree to which all uncertainties are accounted for is quantified by a measure 

referred to as the P-factor, which is the percentage of measured data bracketed by the 

95% prediction uncertainty (95PPU). The 95PPU is calculated at the 2.5% and 97.5% 

levels of the cumulative distribution of an output variable obtained through Latin 

hypercube sampling. Breaking down the total uncertainty into its various components 

is of some interest, but quite difficult to do, and as far as the authors are aware, no 

reliable procedure yet exists.  

Another measure quantifying the strength of a calibration/uncertainty analysis is the 

so called R-factor, which is the average thickness of the 95PPU band divided by the 

standard deviation of the measured data SUFI-2, hence seeks to bracket most of the 

measured data with the smallest possible R-factor. SUFI-2 starts by assuming a large 

parameter uncertainty (within a physically meaningful range), so that the measured 

data initially falls within the 95PPU, then decreases this uncertainty in steps while 

monitoring the P-factor and the R-factor. In each step, previous parameter ranges are 

updated by calculating the sensitivity matrix (equivalent to Jacobean), and equivalent 

of a Hessian matrix, followed by the calculation of covariance matrix, 95% 

confidence intervals of the parameters, and correlation matrix. Parameters are then 

updated in such a way that the new ranges are always smaller than the previous 

ranges, and are centered on the best simulation. The goodness of fit and the degree to 

which the calibrated model accounts for the uncertainties are assessed by the above 

two measures. An ideal situation would lead to a Pfactor of about 100% and an R-

factor near zero. When acceptable values of R-factor and P-factor are reached, then 

the parameter uncertainties are the desired parameter ranges. Further goodness of fit 

can be quantified by the R2 and/or Nash-Sutcliffe (NS) coefficient between the 

observations and the final best simulation.  
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2.7.8 First-order second moment (FOSM)  

The first-order second moment (FOSM) method is one of the uncertainty assessment 

methods that are based on probability theory. Owing to its simplicity, the FOSM 

method is one of the most widely used techniques in civil engineering applications for 

uncertainty assessment. This method uses a linearization of the function that relates 

the input variables and parameters to the output variables. It takes its name from the 

fact that it uses the first-order terms of the Taylor series expansion about the mean 

value of each input variable and requires up to the second moments of the uncertain 

variables (Maskey, 2004).  

In the following paragraph, there is a general idea about this method. The mean (also 

called the first moment) and variance (or second moment) information on the 

probability density function of studied variables is needed. In many cases the 

available information is limited to the mean and variance of X. Furthermore, even if 

the probability density function is known, the computation of the integrals of the 

mean and variance may be time consuming. The FOSM method provides faster 

Define the objective function 

Estimate absolute minimum and maximum ranges 

Absolute sensitivity analysis 

Calculate uncertainty ranges 

Sampling 

Evaluate the sample 

Hessian matrix 

Parameter covariance matrix lower bound 

Calculate standard deviation and 95% 

Parameter correlations 

t-test 

Uncertainties calculation 

Figure 2-18 Schematic presentation of SUFI-2 uncertainty 

analysis routine main steps 
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approximations that allow approximate values of the mean and variance to be 

computed. 

For example, consider a function of several random 1,..., n
X X .  

1( ,..., )
n

Y y X X=  

Expanding the function in a Taylor series about the mean values 1,..., nX X yields the 

following expressions 

1( ) ( ,..., )nE Y y X X=  Equation 2-7 

 

 

 

 

 

Where Cov (Xi, Xj) is the covariance between Xi and Xj, defined as 

All derivatives are evaluated at the mean values iX , The quantity 
i

y

X

∂

∂  is called the 

sensitivity of Y to the input variable Xi.  The first term on the right-hand side of 

Equation (2) represents the contribution of the variances of the input variables to the 

total variance of the output. The second term denotes the influence of a possible 

correlation among the various possible pairs of input variables. If the input variables 

are statistically independent, i.e. ( )cov , 0
i j

X X =  this second term vanishes and the 

variance of Y becomes  

 

Where Var(Y)i is the variance in Y due to the variance (uncertainty) in the input 

variable Xi.  

Although the method is simple and widely used, it suffers from some disadvantages, 

which will be discussed din more details in the Literature review chapter.  

Furthermore, there are also the different applications of artificial neural networks 

(A.N.N.). The fuzzy set theory that the representation of uncertainty by a non-

probabilistic approach began to increase in pace rapidly 
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2.7.9 Uncertainty estimation based on local errors and clustering (UNEEC) 

This section presents a novel method to estimate models total uncertainty using 

machine learning approach. This method is called "uncertainty estimation based on 

local errors and clustering" and it was originally developed by (Durga and Dimitri, 

2006). It assumes that the model error (mismatch between the observed and simulated 

river flow) is the best indicator of the total model uncertainty.  

UNEEC considers model as in Equation  2-10 

Where: 

X   the input data  

θ the parameter values,  

ŷ  the model output,  

ε  the additive error,  

 

UNEEC consists of three main parts, clustering, compute empirical error distribution 

and build uncertainty processor. 

Cluster analysis here is the partition of the input data into clusters. There are three 

types of clustering (excluding, overlapping and hierarchical). In excluding clustering 

(like K-means clustering) each data point belongs to only one cluster. Overlapping 

clustering (like fuzzy C-means clustering) each data point belongs to several classes 

with some degree ranges from zero to one. Last clustering type, hierarchical 

clustering, it begin with each data point as a separate cluster then it merge them into 

larger clusters(Durga and Dimitri, 2006) . 

compute empirical error distribution, in this step UNNEC calculates prediction 

interval for any cluster by fitting the error distribution to each cluster independently 

without pre-assumptions about model errors are not required. 

( ) 21
ˆ, εεθ +=+= yXMy

Equation 2-10 
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Figure 2-19 Main steps of uncertainty estimation using UNEEC 
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3 Tools used in watershed modeling and optimization 

3.1 Soil and water assessment tool (SWAT) 

3.1.1 Introduction 

Selecting the appropriate tool is the first step in hydrological watershed modelling and 

it has great affect on the final results. For this model Soil and Water Assessment Tool 

(SWAT) was selected as a hydrological modelling tool. Because it is accepted by 

most of the hydrologiest as a powerfull hydrological modeling tool. And it simulates 

very large basins or a variety of management strategies without excessive investment 

of time or money. Also it is a continuous time modelling tool that enables its users to 

study long-term impacts. Furthermore, it is easy to use it and it's documents are very 

detailed and clear. Lastly it is a free software and public domian which make it easy to 

use it even in the limited budget projects.  

As a quick overview on SWAT, this software developed by the United State 

Department of Agriculture (USDA), to predict the impact of land management 

practices on water, sediment and agricultural chemical yields in large complex 

watersheds with varying soils, land use and management conditions over long 

periods. SWAT can deal with large watersheds without high costs of money or 

computer time. Moreover, it is valid for the biological issues, and to study long-term 

hydrological processes and its impacts.  

SWAT devides the watershed subcatchments into number of hydrologic units(HRUs) 

in regards to increase model accurasy. These units are the areas that have the unique 

compination of landuse, management system and soil attrinutes so it will be modelled 

in the same method and have the same parameters. HRUs became a general role that 

every subbasin shouls has (1-10) HRUs. SWAT groups the input parameters into 

cateegories like (subbasin, wetland, wateruse, managent, etc) inputfiles. The total 

number of parameters to model watersheds it may be needs over 300 parameters to 

discribr it very accuratly. 

In the following, a short overview, on the mathematical equations that control 

hydrological process in SWAT models, more details are given in . First of all, water 

balance is the driving force behind everything that happens in the watershed, where 

the laws for conservations of mass and momentum are used to describe the water 

balance in the hydrological system. Also, SWAT deparates hydrological process into 

two main parts, these parts are  land and routing phases. Figure  3-2 and Figure  3-3 

displays the whole hydrological process in SWAT. 

3.1.2 SWAT Mathematical equations  

A complete description of SWAT equations can be found in (Neitsch, et al., 2002). 

3.1.2.1 Main phases in SWAT hydrological processes 

land phase of the hydrologic cycle controls the amount of water, sediment, nutrient 

and pesticide loadings to the main channel in each subbasin. While routing phase 
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defines as the movement of water, sediments, etc through the channel network of the 

watershed to the outlet.  

land phase consists of precipitation interception, surface runoff, soil and root zone 

infiltration, evapotranspiration and ground water flow . And SWAT solves this phase 

using the following water balance equation: 

)(
1

gw

t

i

sweepasurfdayot QEQRSWSW −−−−+= ∑
=

ω  Equation 3-1 

Where  SWt is the final soil water content (mm).  

SWo is the initial soil water content (mm).  

t is the time (days).  

Rday is the amount of precipitation on day i (mm). 

Qsurf is the amount of surface runoff on day i (mm).  

Ea is the amount of evapotranspiration on day i (mm).  

wseep is the amount of water entering the vadose zone from the soil profile on 

day i (mm). and 

Qgw is the amount of return flow on day i (mm).  
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Soil storage

Soil evaporation

Transpiration

Lateral flow

Percolation
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Transmission losses

Return

Seepage
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Stream flow

Transmission losses

Route to the 
next reservoir

Figure 3-1 Schematic of pathways available in SWAT 
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3.1.2.2 Surface runoff calculations 

For the surface runoff process, it occures whenever the rate of water application to the 

ground surface exceeds the rate of infiltration. SWAT provides two methods for 

estimating surface runoff: the SCS curve number procedure and the Green & Ampt 

infiltration method. here is a brief discription to both methods. 

1. The SCS curve number procedure is a function of the soil’s permeability, land 

use and antecedent soil water conditions. where the SCS runoff equation is an 

empirical model that came into common use in the 1950s.  

this equation is : 
( )

( )SIR

IR
Q

aday

aday

surf
+−

−
=

2

    Equation 3-2 

Where  Qsurf :the accumulated runoff or rainfall excess (mm), 

Rday  :the rainfall depth for the day (mm), 

Ia  :the initial abstractions (surface storage, canopy interception, infiltration 

prior to runoff) (mm), and  

S  :the retention parameter. 

theredore, Runoff will only occur only when Rday > Ia. and That retention parameter S 

is defined as:  









−= 10

1000
4.25

CN
S  Equation 3-3 

Figure 3-2 Schematic representation of the hydrologic cycle in SWAT 
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Where CN is the curve number for the day. and the initial abstractions, Ia, is 

commonly approximated as 0.2S and 
( )

( )SIR

IR
Q

aday

aday

surf
+−

−
=

2

    Equation 3-2 

becomes 

( )
( )SR

SR
Q

day

day

surf
8.0

2.0
2

+

−
=  Equation 3-4 

SWAT calculates CN using soil classes and land uses classifications data. Moreover, 

it makes three classes of CN. The first one CN1 is the lowest; it is corresponding to 

dry condition. The third type CN3 is corresponding to wet condition. While the 

second type CN2 is the curve number in the average moisture case. The moisture 

condition CN2 is assumed to appropriate for 5% slopes. 

2. The Green & Ampt equation was developed to predict infiltration assuming 

excess water at the surface at all times. The equation assumes that the soil 

profile is homogenous and antecedent moisture is uniformly distributed in the 

profile. The Green-Ampt Mein-Larson infiltration rate is defined as: 









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
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Kf
inf,

inf, 1
θ

 Equation 3-5 

where  finf  :the infiltration rate at time t (mm/hr),  

Ke   :the effective hydraulic conductivity (mm/hr), is approximately equivalent 

to one-half the saturated hydraulic conductivity of the soil, Ksat 

Ψwf :the wetting front matric potential (mm), where matric potential is A force 

between water and soil surfaces 

∆θv :the change in volumetric moisture content across the wetting front 

(mm/mm) and  

Finf  :the cumulative infiltration at time t (mm H2O). 

3.1.2.3 Peak runoff rate assessment 

The peak runoff rate is the maximum runoff flow rate that occurs with a given rainfall 

event. The peak runoff rate is an indicator of the erosive power of a storm and is used 

to predict sediment loss. SWAT calculates the peak runoff rate with a modified 

rational method. 

conc

surftc

peak
t

AreaQ
q

⋅

⋅⋅
=

6.3

α
 

Where qpeak is the peak runoff rate (m3/s),  

αtc is the fraction of daily rainfall that occurs during the time of concentration,  

Qsurf is the surface runoff (mm), 

Area is the subbasin area (km2),  

tconc is the time of concentration for the subbasin (hr) and  

3.6 is a unit conversion factor. 
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3.1.2.4 Evapotranspiration assessment 

Evapotranspiration is a collective term that includes all processes by which water at 

the earth. surface is converted to water vapor. It includes evaporation from the plant 

canopy, transpiration, sublimation and evaporation from the soil. The difference 

between precipitation and evapotranspiration is the water available for human use and 

management. Assessment of watershed evapotranspiration is critical in the assessment 

of water resource. SWAT calculates potential and actual evapotranspiration.  

SWAT incorporated three numerical methods to estimate potential evapotranspiration 

PET. The Penman-Monteith method, the Priestley-Taylor method and the Hargreaves 

method, also user can enter PET manually. On the other side, SWAT calculates actual 

evapotranspiration ET after determine PET. SWAT first evaporates any rainfall 

intercepted by the plant canopy. Next, SWAT calculates the maximum amount of 

transpiration and the maximum amount of sublimation/soil evaporation. When PET is 

less than amount of free water held in the canopy, it assumes that ET = PET. 

However, when PET less than amount of free water held in the canopy, so no water 

will remains in the canopy after initial evapotranspiration. 

3.1.2.5 Percolation assessment 

Percolation is calculated for each soil layer in the profile. Water is allowed to 

percolate if the water content exceeds the field capacity water content for that layer. 

The volume of water available for percolation in the soil layer is calculated: 

lylylylyexcessly FCSWFCSWSW >−=  if   ,  Equation 3-6 

lylyexcessly FCSWSW ≤=  if                    0,  Equation 3-7 

Where: 

SWly,excess is the drainable volume of water in the soil layer on a given day (mm) 

SWly is the water content of the soil layer on a given day (mm) and  

FCly is the water content of the soil layer at field capacity (mm).  

The amount of water that moves from one layer to the underlying layer is calculated 

using storage routing methodology. The equation used to calculate the amount of 

water that percolates to the next layer is: 
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TT

t
SWw exp1,,  Equation 3-8 

where  

wperc,ly is the amount of water percolating to the underlying soil layer on a 

given day (mm),  

SWly,excess is the drainable volume of water in the soil layer on a given day 

(mm),   

∆t is the length of the time step (hrs), and  

TTperc is the travel time for percolation (hrs). 

The travel time for percolation is unique for each layer. It is calculate by  
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sat

lyly

perc
K

FCSAT
TT

−
=  Equation 3-9 

Where  

TTperc is the travel time for percolation (hrs),  

SATly is the amount of water in the soil layer when completely saturated (mm),  

FCly is the water content of the soil layer at field capacity (mm), and  

Ksat is the saturated hydraulic conductivity for the layer (mm/h). 

3.1.2.6 Lateral Flow assessment  

Lateral flow will be significant in areas with soils having high hydraulic 

conductivities in surface layers and an impermeable or semipermeable layer at a 

shallow depth. In such a system, rainfall will percolate vertically until it encounters 

the impermeable layer. The water then ponds above the impermeable layer forming a 

saturated zone of water, i.e. a perched water table. This saturated zone is the source of 

water for lateral subsurface flow. 

the drainable volume of water stored in the saturated zone of the hillslope segment per 

unit area, SWly,excess, is 

2

1000
,

hilldo
excessly

LH
SW

⋅⋅⋅
=

φ
 Equation 3-10 

where  

SWly,excess is the drainable volume of water stored in the saturated zone of the 

hillslope per unit area (mm),  

Ho is the saturated thickness normal to the hillslope at the outlet expressed as a 

fraction of the total thickness (mm/mm), 

Φd is the drainable porosity of the soil (mm/mm),  

Lhill is the hillslope length (m), and  

1000 is a factor needed to convert meters to millimeters. 

3.1.2.7 Groundwater assessment 

Groundwater is water in the saturated zone of earth materials under pressure greater 

than atmospheric. Water enters groundwater storage primarily by  infiltration or 

percolation. Water leaves groundwater storage primarily by discharge into rivers or 

lakes, but it is also possible for water to move upward from the water table into the 

capillary fringe. Furthermore SWAT simulates two aquifers in each subbasin. The 

shallow aquifer is an unconfined aquifer that contributes to flow in the main channel 

or reach of the subbasin. The deep aquifer is a confined aquifer. Water that enters the 

deep aquifer is assumed to contribute to streamflow somewhere outside of the 

Watershed . 

The water balance for the shallow aquifer is:  

shpumpdeeprevapgwrchrgishish wwwQwaqaq ,1,, −−−−+= −  Equation 3-11 

where  

aqsh,i  the amount of water stored in the shallow aquifer on day i (mm),  

aqsh,i-1   the amount of water stored in the shallow aquifer on day i-1 (mm),  

wrchrg   the amount of recharge entering the aquifer on day i (mm), 
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Qgw   the groundwater flow, or base flow, into the main channel on day i 

(mm),  

wrevap   the amount of water moving into the soil zone in response to water 

deficiencies on day i (mm),  

wdeep   the amount of water percolating from the shallow aquifer into the deep 

aquifer on day i (mm), and  

wpump,sh  the amount of water removed from the shallow aquifer by pumping on 

day i (mm). 

The water balance for the deep aquifer is: 

dppumpdeepidpidp wwaqaq ,1,, −+= −  

Where  

aqdp,I the amount of water stored in the deep aquifer on day i (mm) 

aqdp,i-1 the amount of water stored in the deep aquifer on day i-1 (mm) 

wdeep the amount of water percolating from the shallow aquifer into the deep 

aquifer on day i (mm), and  

wpump,dp the amount of water removed from the deep aquifer by pumping on 

day i (mm).  

3.1.3 Important input files for SWAT  

There are some important files control model operations in SWAT. SWAT user is 

able to read / edit these files to control model operation and its printouts. The 

following sections review some of those. 

Watershed configuration file is called (fig.fig). It defines the routing network in the 

watershed. Controlling SWAT inputs/outputs is done mainly by (file.cio) file. It 

contains names of input files for all watershed level variables, controlling model 

variables and output printing variables. Management input files are those files with 

(mgt) extension. It contains management scenarios and specifies the land cover 

simulated. Files with (sol) extension are soil input files. It contains information about 

the physical characteristics of the soil. Groundwater input files have extension (gw). It 

contains information about the shallow and deep aquifers.  

Some of the privious files are editable by user to give him more flixability to control 

modeling process in case of using SWAT out of the graphical interface. or when 

linking SWAT model with external systems. te most inportant ones will discuss in the 

next paragraph. 

(fig.fig). This file has thirteen different commands may be used in the watershed 

configuration file. The commands that used in this study with their numeric codes are 

reviewed here. First command in the list is finish command is the last command line 

in the .fig file. The finish command notifies the model that the end of the command 

lines in the watershed configuration file has been reached. Second one is the subbasin 

command simulates all processes involved in the land phase of the hydrologic cycle 

and computes runoff, sediment, and chemical loadings from each HRU within the 

subbasin. Third command is the route command, it routes the water, sediment, and 

chemical loadings through a main channel or reach. Fourth command is the add 

command, it is used to sum the water, sediment, and chemical loadings of any two 

flows. Last command is the saveconc command, it saves flow, sediment and water 
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quality indicator information from a specified point on the reach network to a file. The 

water quality information is reported as concentrations. This command is useful for 

isolating reach information at a particular point on the channel network.  

(File.cio) SWAT user can select between different types of calculations that provided 

by SWAT by selecting values of factor called ICLB. ICLB values ranges from 0 to 8. 

Zero means run the model and calculate the outflow. One is for calculating the 

sensitivity analysis and write the most sensitive parameters I file called 

(sensresult.out). Two could be used to calibrate model parameters by ParaSol and 

calculate accepted set of parameters in (goodpar.out) and the best parameters 

in(bestpar.out). While ICLB = four directs SWAT to validate the model by rerun the 

model using the beast parameters values that calculated from calibration before but 

the moduler should change the simulation period to the validation period. Fifth 

choice, is to make ICLB = 5 which means run the uncertainty analysis using ParaSol 

technique and write the maximum and minimum flows according to the accepted 

range of parameters. 

3.2 SWAT Arc-View interface 

Due to the huge amount of requred input data into SWAT. It uses one of ArcView 

extensions called AVSWAT as a graphical user interface to define input data and 

other characteristics with easly and quick way. AVSWAT requires the designation of 

land use, soil, weather, groundwater, water use, management, soil chemistry, pond, 

and stream water quality data, as well as the simulation period, to ensure a successful 

simulation. And it creates SWAT input data files. Furthermore, it controls and 

calibrates SWAT simulations. Finally, it extracts and organizes SWAT model output 

data for charting and displaying.  

Figure 3-3AVSWAT model main steps 
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It is a complete preprocessor, interface and post processor of the hydrological model 

SWAT and the SWAT interface, which depends on manual editing on the input files. 

The Arcview interface used for Watershed Delineation; Land Use and Soil Definition; 

Editing of the model Data Bases; Definition of the Weather Stations; Input 

Parameterization and Editing; Model Run; Read and Map-Chart Results and 

Calibration tool.  

Model building procedures using AVSWAT startes after Collecting the data in 

appropriate format. these data contains detailed information about Spatial data, 

Climate/weather data, Rainfall data and temperature data. Then, firstly define the 

spatial data by delineate the study area digital elevation model, catchment shape file 

and delineated streams files. secondly, define the Land Use and Soil classifications, so 

the hydrological response units could be defined. Thirdly; load the weather data which 

is rain fall data, temperature data and weather simulation data. last main step is to 

build the input data files to create ArcView tables (.dbf) that store values for SWAT 

input parameters also to generate the Initial SWAT ASCII input files. After these 

steps the model is ready to run. these steps could be summarized in eight modules: (1) 

Watershed Delineation; (2) HRU Definition; (3) Definition of the Weather Stations; 

(4) AVSWAT Databases; (5) Input Parameterization, Editing and Scenario  

Management; (6) Model Execution; (7) Read and Map-Chart Results; (8) Calibration 

tool. these steps  

3.3 Optimization and uncertainty analysis development tools  

Many software integrated through this study into applying the study objectives. To 

link SWAT model with calibration or uncertainty analysis programs two software 

packages used. GLOBE used to link SWAT model with three calibration techniques, 

and iSWAT used to change edit input files link. The following parts there are 

description to these programs. 

3.3.1 SWAT interface (iSWAT)  

(Yang, 2004) developed this interface to link SWAT text-file-based projects with 

external system analysis programs, this interface consist of two executive files 

(sw_edit2005.exe, sw_extract2005.exe) and some library files.  

First file is editing executable file, it changes SWAT project parameters 

according to a given parameters names and values specified in (model.in) text file. So 

it is very useful for manual calibration. This file has the following format 

x__<parname>.<ext>__<hydrogrp>__<soltext>__<landuse>__<subbsn> 

 Equation 3-12 

The parameter name means that the parameter name will be changed according to 

method x for the combinations of given items <hydrogrp>, <soltexture>, <landuse> 

and <subbasin>, and the missing item(s) mean(s) this change method applies to this 

entire item. The sections in parameter name are separated by two underlines, as single 
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underlines are contained in some SWAT parameter names. Here is an example shows 

the model.in file. 

Table 3-1 

v__Rchrg_Dp.gw 0.08 

v__Canmx.hru 5.13 

v__Esco.hru 0.60 

v__Ch_K2.rte 56.43 

r__Cn2.mgt -0.08 

v__Gw_Revap.gw 0.15 

v__Gwqmn.gw 63.48 

v__Alpha_Bf.gw 0.72 

v__Surlag.bsn 5.70 

This means that all Deep aquifer percolation fraction (Rchrg_Dp) had to be replaced 

by 0.08, all curve numbers (CN2) had to be multiplying a factor of (1- 0.08 = 0.92), 

In <model.in>, a line beginning with “//” means this line is comment.  

Second file is to extract the SWAT outputs into file model.out after running SWAT. 

the format of output definition file (swExtract.def) as the following 

Comments  

rch  //data source type, reserved (only rch file is supported at present). The 

program will extract data from basins.rch  

Output file  //output filename  

Simulation type  //simulation type of SWAT project. It can be 0---monthly, 1—daliy, 2—

yearly simulation, -1 lets the program get the type of swat simulation  

Starting year  //start simulating year of the SWAT project.  

Reach number output option outputVariable1 outputVariable2 Remark 

Here is an exampled of (swExtract.def) 

// this is an example  

rch   

model.out //output filename  

-1 lets the program get the type of swat simulation  
-1 means let the program get the start year of the simulation 

47 FLOW_OUT    

This file means that sw_extract.exe will extract the discharge for reach 47 from 

basins.rch to model.out. and here is an example of the outputs 

FLOW_OUT47_1970.1 33.69 

FLOW_OUT47_1970.2 33.69 

FLOW_OUT47_1970.3 33.26 

FLOW_OUT47_1970.4 33.26 

FLOW_OUT47_1970.5 32.83 

A schematic of iSWAT working is illustrated in Figure  3-5. First, sw_edit.exe reads 

the parameter information from model.in and change the parameter value of the swat 
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text-file-based project, and then swat runs, and in the last step sw_extract.exe extracts 

the specific results defined in file model.out .  

 

3.3.2 GLOBE  

GLOBE: global and evolutionary optimization tool developed by D. P. Solomatine. 

GLOBE is a global optimization tool that search for minimum of a function of 

multiple variables.  

GLOBE configured to use an external program to supply the objective function 

values. The output file of program is used directly by GLOBE. The number of 

independent variables and its constraints values are supplied by the user in the form of 

a simple text file. 

GLOBE applies the following seven global optimization techniques to calibration 

problems: 

• Controlled random search (CRS)  

• Genetic Algorithm (GA)  

• Adaptive cluster covering (ACCO/ACCOL)  

• Multis (a version of Powell-Brent non-derivative algorithm, with multiple 

randomized starts) 

• M-Simplex (a version of the simplex decent algorithm with randomized multiple 

starts) 

• Improved Controlled random search (CRS4a) 

• Adaptive cluster descent (ACD) 

Figure 3-4 iSWAT working stratigy 
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GLOBE iteratively generate values of the model's variables (input vector) and supply 

it to the external program via the file G.PIN. Then GLOBE runs the external program 

(written by the user). This program must read G.PIN file (This file contains real 

numbers either on one line separated by spaces or on separate lines; example 

follows). Then this program calculates the function value and places the calculated 

value (one real number in any format) to the file G.RSP. This file is then read and 

analyzed by GLOBE; the new G.PIN file is generated, etc. The results are reported on 

Figure 3-5 Main steps of GLOBE program 

SWAT

model.in

SWATedit

Nash-Sutcliffe

GLOBE

G.pin G.rsp

SWAT

model.in

SWATedit

Nash-Sutcliffe

GLOBE

G.pin G.rsp

Figure 3-6 Exchanging information between SWAT and GLOBE  
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screen and in a number of report files. These results files have extensions HIS, RST 

and OUT. (Project name).his (file with the history of algorithms runs; (Project 

name).rst (similar to the previous one but gives more details); (Project name).out (file 

to be used in spreadsheet programs to for visualize the comparative performance of 

algorithms). 

3.3.3 UNEEC TOOL for uncertainty estimation 

This is a Matlab graphical user interface developed by (D. L. Shrestha,). Figure 3-7 

displays the main window of this tool, it shows switching buttons between different 

windows, also it displays the controlling buttons. UNEEC TOOL uses different 

alternative data driven modeling approaches to estimate hydrological models 

uncertainty, these alternatives are found in main module window, from this window 

also, UNEEC TOOL reads the necessary data for the selected model (Figure  3-9). 

After that, user should select clustering method, UNEEC TOOL provides four 

clustering methods and it also gives user ability to add his own clustering method 

Figure  3-10. All uncertainty analysis options, by means, select uncertainty analysis 

tool, define confidence level, select validation parameters and some other options are 

found in window of uncertainty module, as can see in Figure  3-11. After completing 

all these steps, user now can click on run buttons, the results will be as  

 

Figure 3-7 UNEEC TOOL main interface 
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Figure 3-8 Selecting the uncertainty analysis method in UNEEC TOOL 
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Figure 3-9Clustering options in UNEEC TOOL 

Figure 3-10 Uncertainty options in UNEEC TOOL 
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Figure 3-11 Hydrograph and prediction interval in training and validation periods 

3.3.4 Matlab 

MATLAB stands for 'MATrix LABoratory'. It is a numerical computing environment 

and programming language. MATLAB is a high performance interactive software 

package for scientific and engineering computation. It integrates numerical analysis, 

matrix computation and graphics in an easy-to-use environment where problems and 

solutions are expressed just as they are written mathematically. In addition, MATLAB 

functionality can be extended by application specific toolboxes, like, partial 

differential equation, genetic algorithm and direct search, statistics, neural network, 

and matlab compiler toolbox.  

MATLAB was used to link operate GLOBE with SWAT as an external application, 

ad for generate sets of parameters to use Monte Carlo and GLUE calibration methods.  
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4 Nzoia case study 

4.1 Introduction 

The study catchment is in the western part of Kenya. This country is about as large as 

France is and situated in East Africa between 5°N and 5°S. It has a very diverse relief 

with a low coastal plain on the Indian Ocean shore, extensive inland plateau regions 

between 915 m and 1,500 m and several mountain ranges and isolated peaks such as 

Mount Kenya, which rises to 5,200 m and has a permanent snowcap. It is bordered on 

the west by Uganda and the shores of Lake Victoria.  

The catchment under studying as written before is in the western region of Kenya 

where most of this region is highlands on side of the eastern Rift valley, extending to 

the Ugandan border. It is the most densely populated part of the country and contains 

the most productive agricultural land. So, Nzoia River has been selected to study the 

uncertainty of hydrological models results. This river is also of international 

importance as it contributes enormously to the shared waters of Lake Victoria. It lies 

within the south-Eastern part of Mt Elgon and the western slopes of the Cherangani 

hills. 

 

Figure 4-1 Nzoia catchment 
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Many other rivers feed the Nzoia before it discharges into Lake Victoria. The major 

ones are Koitogos (Sabwani), Moiben, Little Nzoia, Ewaso Rongai, Kibisi, Kipkaren 

and Kuywa. Other tributaries are Chwele, Khalaba, Lusumu and Viratsi . 

This Basin lies between latitudes 1°30’N and 0°05’S and longitudes 34° and 35° 45’E 

see Figure  4-2 . It originates from Cherangani Hills at a mean elevation of 2300 m 

above sea level (asl) and drains into Lake Victoria at an altitude of 1000 m (asl). It 

runs approximately South-West and measures about 334 km with a catchment area of 

about 12,900 km2, with a mean annual discharge of 1800 x 10
6
 m3 see  

Figure 4-2 Satellite image for Nzoia River 
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From the geology point of view, Nzoia area like most of western Kenya, characterized by 

Archean granite/greenstone terrain in along Lake Victoria (Schlüter, 1997). See  

 

Figure 4-3 Geological map of Kenya(Schlβter and Trauth, 2006) 
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The population within the Basin is more than 3 million comprising of Bantu and 

Nilotes see Figure  4-5. 

On the climate side, Although Kenya lies athwart the equator; annual rainfall over 

most of the country is surprisingly low and rather variable from year to year. This is 

because the inter-tropical belt of cloud and rain passes rather quickly across Kenya in 

April and October and because the predominant seasonal winds, the north and south 

monsoons as they are called in East Africa, have a track parallel to the coast and have 

already passed over large areas of land before reaching Kenya. 

So, The climate of the Basin is mainly tropical humid characterized by day 

temperatures varying between 16°C in the highland areas of Cherangani and Mt. 

Elgon to 28° C in the lower semi-arid areas on annual basis. The mean annual night 

temperatures vary between 4° C in the highland areas to 16° C in the semi-arid areas. 

Mean annual rainfall varies from a maximum of 1100 to 2700 mm and a minimum of 

600 to 1100 mm. The catchment experiences four seasons in a year as a result of the 

inter-tropical convergence zone. There are two rainy seasons and two dry seasons, 

namely, short rains (October to December) and the long rains (March to May). The 

dry seasons occur in the months of January to February and June to September.  

Figure 4-4 Population density in Kenya 
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4.2 Data preparation 

Because SWAT is a distributed physically based model, it needs a huge amount of 

information about weather, soil properties, topography, vegetation, and land 

management practices occurring in the watershed. In the following part, there is a 

catchment's data description and some descriptive statistics about it. 

Input data for SWAT assembled with the SWAT Arc View Interface. SWAT model 

input data for topography were extracted from a digital elevation model (DEM) and 

Figure 4 displays the elevation information for the watershed after delineating the 

watershed, contouring the surface and predicting the stream flow paths. 

4.2.1 Topographic data 

For the soil properties, a shape file with all the available soil characteristics loaded 

into SWAT. In addition, the land use added to the model, there are two figures (7,8) 

displays the land use classes distributions and it distribution map. 

For the weather data there are 32 Rainfall stations with available recorded data from 

1960 until 2004, also there are four temperature stations with temperature data for       

years.  Finally there is a recorded out flow discharge at the out let of sub-basin 29 as 

shown in figure 5. 

 

 

Figure 4-5 Nzoia Catchment topographic map 
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4.2.2 Soil types data 
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Figure 4-6 Soil classes percentiles in Nzoia watershed 

Table 4-1 Soil classifications map 



 59 

 

4.2.3 Land use data 

\model folder\watershed\text\landusesoilrepswat.txt 

 

 

 

Class Land use % Area 

RFHC Rainfed herbaceous crop 60.73 
FRST Forest-Mixed 15.93 
CORN Corn 5.81 
SHRB Closed and open shrubs 4.63 
FRSD Forest-Deciduous 3.18 
SWHT Spring Wheat 3.11 
HERB Closed and open herbaceous 3.03 
RFSC Rainfed shrub crop 1.12 
WETL Wetlands-Mixed 0.86 
RFWC Wheat 0.59 
WETT Woody and shrub temporary 0.39 
IRHC Irrigated herbaceous crop 0.37 
FRSE Forest-Evergreen 0.11 
URMD Urban 0.11 
WATR Water 0.03 

Table 4-2 Land cover and plant codes   



 60 

 

4.2.4 Temperature data 

Temperatures over much of Kenya are subtropical or temperate, because of the 

reduction of temperature with altitude, and are similar to those in California rather 

than those elsewhere in equatorial Africa. Only the coastal lowlands experience the 

constant high temperatures and humidity associated with equatorial latitudes. Within 

the study area, there are four-temperature gauge stations have been used to the 

temperature data, but unfortunately, many data are missing. These stations are 

kakamega (average 27°c), kisumu (average 23.3°c), Kitale (average 25.9°c), Eldoret 

(average 18.4°c).  

 ##

##

##
##

##

##

##
##

##
## ##

####
##

##

##

##

##
##

##
####

##

#

%

%

%

Kitale

Eldoret

kakamega

Table 4-3 Land use classes percentiles in Nzoia watershed 

Table 4-4 Temperature data records 
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4.2.5 Rainfall data 

There are data collected from 32 rainfall stations in the area of the Nzoia. Only 15 of 

those fall inside the watershed. Therefore, those 15 stations’ data are the only used in 

rainfall analysis. Because SWAT calculate the rainfall on the subcatchments 

according to the shortest distance between rain gage station and the center of the 

subcatchment. Those station provide daily rainfall data from (1960 to 2004) In the 

following table, there are some descriptive statistics on the rainfall data all over the 

recorded years. 

Table 4-6 rainfall data description 

Station#   Jan Feb Mar Apr Ma

y 
Jun Jul Aug Sep Oct Nov Dec 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 15.0

0 

42.0

0 

65.0

0 

65.0

0 

48.0

0 

40.0

0 

29.0

0 

46.0

0 

42.0

0 

50.0

0 

72.0

0 

50.0

0 µ 0.37 0.92 2.07 3.85 4.28 3.31 3.98 3.92 2.29 3.04 2.24 0.56 
k8835039 

  
σ   1.08 2.64 4.96 6.77 6.78 6.23 5.41 6.43 5.00 4.99 4.99 2.09 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 20.0

0 

60.0

0 

41.0

0 

92.0

0 

53.0

0 

33.0

0 

55.0

0 

45.0

0 

38.0

0 

47.0

0 

41.0

0 

28.0

0  µ 0.56 1.13 1.34 4.07 4.40 2.68 3.98 4.41 2.45 2.45 1.56 0.33 
k8834013 

  
σ   1.71 3.82 3.35 7.89 7.95 5.04 6.36 6.80 4.94 4.80 3.25 1.27 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 66.3

0 

48.4

0 

60.1

0 

45.0

0 

58.0

0 

37.7

0 

49.9

0 

52.7

0 

60.4

0 

100.

00 

77.1

0 

28.0

0 µ 0.62 1.06 2.16 3.97 3.85 2.48 4.52 3.96 2.51 1.42 2.14 0.33 
k8935158 

  
σ   2.29 3.22 5.30 6.40 7.09 5.08 7.02 6.49 6.68 4.13 5.16 1.27 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 23.2

0 

54.1

0 

75.9

0 

60.1

0 

57.3

0 

50.2

0 

41.1

0 

58.2

0 

52.5

0 

44.7

0 

53.0

0 

42.3

0  µ 0.77 1.59 3.28 5.86 7.31 4.15 3.91 5.09 4.06 3.75 3.46 1.26 
Kitale 

  
σ   2.02 4.33 6.47 9.36 10.9 7.53 6.47 8.61 6.55 6.04 6.37 4.12 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 33.0

0 

53.0

0 

47.0

0 

95.0

0 

44.0

0 

46.0

0 

54.0

0 

42.0

0 

78.0

0 

41.0

0 

52.0

0 

26.0

0  µ 0.81 1.47 2.54 4.98 4.17 3.34 5.65 5.08 2.59 1.73 2.34 0.48 
k8935133 

  
σ   2.57 3.87 5.62 9.84 7.17 6.04 8.65 8.36 6.94 3.67 4.83 1.64 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 41.0

0 

61.0

0 

58.0

0 

68.0

0 

75.0

0 

43.0

0 

41.0

0 

51.0

0 

81.0

0 

79.0

0 

58.0

0 

21.0

0  µ 1.28 1.88 3.62 5.90 6.46 4.42 3.66 5.68 5.09 3.66 3.08 0.84 
k8934008 

  
σ   3.99 4.46 7.41 9.36 9.85 7.14 5.67 8.59 8.74 6.69 5.79 2.37 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 94.4

0 

49.0

0 

62.8

0 

85.8

0 

58.7

0 

55.9

0 

84.2

0 

51.5

0 

58.4

0 

51.4

0 

35.8

0 

37.2

0  µ 1.08 1.68 2.56 5.04 5.91 5.06 5.48 6.77 3.98 2.20 2.01 0.85 
k8935170 

  
σ   3.92 4.13 5.75 8.21 9.29 8.19 9.00 9.99 7.60 5.13 3.94 2.64 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 31.8

0 

49.8

0 

55.1

0 

48.1

0 

48.1

0 

56.0

0 

48.0

0 

69.0

0 

44.8

0 

76.5

0 

72.2

0 

55.5

0  µ 1.39 2.55 3.33 6.20 7.61 3.74 5.57 6.18 5.17 4.15 3.55 1.33 
k8934060 

  
σ   3.80 5.75 7.09 8.87 9.82 7.27 7.53 10.1 7.56 7.69 7.01 4.08 

Eldoret 

  
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Mx 28.0

0 

55.0

0 

51.0

0 

81.0

0 

49.0

0 

56.0

0 

48.0

0 

69.0

0 

30.0

0 

38.0

0 

63.0

0 

24.0

0  µ 0.82 1.52 2.42 5.32 4.21 3.74 5.57 6.18 2.13 1.69 2.51 0.62 

σ   2.22 3.89 5.71 10.2 7.64 7.27 7.53 10.1 5.17 3.45 5.18 2.08 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 82.0

0 

80.0

0 

80.0

0 

100.

00 

73.0

0 

73.0

0 

60.0

0 

120.

00 

80.0

0 

74.0

0 

37.0

0 

45.0

0  µ 2.48 2.93 4.99 8.93 8.75 7.25 6.29 8.58 5.84 4.16 3.57 1.64 
k8934130 

  
σ   6.87 6.69 10.5 13.9 11.3 10.4 9.37 11.3 9.10 7.41 6.59 5.01 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 29.3

0 

81.3

0 

46.9

0 

55.4

0 

42.5

0 

51.6

0 

50.5

0 

40.0

0 

45.1

0 

30.6

0 

53.5

0 

24.5

0  µ 0.89 1.66 2.82 6.88 4.59 2.61 3.49 4.53 1.92 2.14 3.05 1.13 
K8935010 

  
σ   2.46 4.54 5.47 9.14 6.66 5.05 5.17 6.95 4.04 3.95 5.84 3.06 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 67.0

0 

42.0

0 

80.0

0 

74.0

0 

52.0

0 

73.0

0 

84.0

0 

74.0

0 

62.0

0 

52.0

0 

65.0

0 

57.0

0  µ 2.89 3.58 4.91 8.46 8.03 6.12 5.96 6.97 5.90 4.41 4.46 2.36 
kakamega 

  
σ   7.76 7.61 9.73 12.6 9.86 10.1 9.06 10.3 9.22 7.24 8.11 6.15 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 50.0

0 

54.0

0 

90.0

0 

85.0

0 

58.0

0 

60.0

0 

82.0

0 

63.0

0 

75.0

0 

76.0

0 

74.0

0 

67.0

0  µ 2.00 2.15 4.93 8.96 8.11 3.41 5.37 4.82 5.00 4.99 4.70 2.44 
k8934059 

  
σ   5.17 5.31 10.3 13.2 11.2 7.56 8.48 10.2 9.29 9.29 9.55 6.72 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 59.5

0 

58.1

0 

90.0

0 

98.5

0 

60.0

0 

38.8

0 

56.2

0 

68.0

0 

49.7

0 

72.0

0 

60.9

0 

139.

10  µ 1.14 1.72 4.14 5.45 4.34 1.75 3.77 2.42 2.68 2.93 3.05 2.68 
K8934139 

  
σ   3.36 5.19 9.62 9.60 7.88 4.34 4.44 5.55 5.64 6.24 6.81 7.24 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 41.0

0 

90.0

0 

75.0

0 

72.0

0 

73.0

0 

42.0

0 

58.0

0 

54.0

0 

108.

00 

37.0

0 

57.0

0 

71.0

0  µ 1.30 3.15 4.79 8.16 8.88 4.33 3.81 4.33 4.42 3.85 5.14 1.92 
k8934134 

  
σ   3.65 7.91 9.19 12.1 12.0 7.07 6.55 7.41 7.91 6.52 9.68 5.68 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mx 40.0

0 

48.0

0 

61.5

0 

89.0

0 

58.4

0 

95.5

0 

54.5

0 

61.7

0 

66.0

0 

52.8

0 

69.0

0 

130.

10  µ 1.51 2.84 4.04 6.76 8.24 5.45 5.11 5.75 5.36 3.80 3.94 1.89 
k8934119 

  
σ   4.34 6.54 8.46 11.7 12.3 9.37 9.28 9.40 9.44 8.80 8.24 6.11 
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The following figure displays that there is a double rainy peaks in the summer in 

months April and August with minimum rain in winter season. 

In the figures Figure  4-8 and Figure  4-9, the spatial distribution of the rainfall 

average monthly data over Nzoia watershed. 
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Table 4-7 Average yearly rainfall 
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Figure 4-7 Monthly rainfall spatial distribution (Jan.-Jun.) 
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Figure 4-8 Monthly rainfall spatial distribution (July-Dec.) 
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4.2.6 Observed flow data  

29 years of observed flow data was measured in a flow station at outlet of Nzoia river 

(Figure  4-10) these data are valid from 1970 to 1998. Unfortunately, flow data after 

mid 1985 have a lot of missing values. So, calibration periods selected to be from 

1968 to 1979 with two years worming up. while the validation period selected from 

1978 to 1984. 
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Figure 4-9 Flow gage station 

Figure 4-10Observed flowtime series 
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4.3 Model setup 

4.3.1 Introduction 

Building distributed  hydrological models became more easy after the great 

development in data collection techniques like remote sensing and settelites which 

gives more accurate data. So, After prepare data, model setuped using SWAT 

graphical user interface called AVSWAT. This model setup process as in Figure 

 3-4can be classified into the following main steps. First step is watershed deliniation, 

which includes DEM setup, streams definition and outlet definition. Second step is 

land use/soil characterization. Thisrdly, import weather data. Fourth step is creation of 

inputs, which includes write all input files and modify any of them manually if 

needed. last step is to run SWAT and read the outputs. In the following paragraphs 

there are some discriptions to main steps of model setup. 

4.3.2 Watershed delineation 

This tool is an automatic procedure utilizes Digital Elevation Model (DEM) data to 

delineate subwatersheds, after define some parameters by the user. Figure  4-12shows 

defining DEM file, also definition of shapefile contains a digitization to study area 

streams, which makes delineation processes more easy and accurate. But before 

completing this procedure, user should check DEM properties Figure  4-12. This 

check means select DEM projection and DEM vertical and horizontal units. 

Figure 4-12 Define DEM file and digitized strams 

Figure 4-11 Projecting definition 
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Figure 4-16 Open DEM file 
Figure 4-15Open manual digitized 

shapefile for Nzoia ruver 

Figure 4-14 Select suncatchments areas 

Figure 4-13Automatic streams defining 
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4.3.3 Land use and soil characterization 

 

Figure 4-17 Landuse classes 

 

 

Figure 4-18 Soil classes 
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Figure 4-19 Define soil and landuse shape files 

4.3.4 Import weather data 

 

Figure 4-20 Weather data definition 
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Figure 4-21 Weather stations 

4.3.5 Creation of inputs 

 

Figure 4-22 Build all input files 
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4.3.6 Running the model 

 

Figure 4-24 Model runing options 

Figure 4-23 
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4.3.7 Read model outputs 

Reports menu appears when select  SWAT user can show model output reports 

after complete running the model, by selecting show list from,  

 

Figure 4-25 SWAT results window  

Figure 4-26 Available data reports in SWAT 
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[ 

4.4 Model results analysis 

In case of text files model, user has ability to define number of years to skip output 

printing by changing NYSKIP value in (file.cio).Furthermore, user can select output 

details level to be daily, monthly or yearly by changing print code IPRINT value in 

(file.cio). Then After running SWAT, user can get the model outputs as map charts, 

reports or database files. The most important SWAT output files are (output.std ) this 

file has a summary output. (output.rch)  the main channel output file contains 

summary information for each routing reach in the watershed.  
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4.5 Sensitivity analysis in SWAT  

Sensitivity analysis is described theoretically in section 2.2 and here is a brief 

description of using sensitivity analysis in SWAT model. SWAT will perform the 

analysis for a predefined set of 27 variables with 10 intervals in the LH sampling. 

This means that SWAT will make 280 runs to complete the sensitivity analysis.  

Modeler can study sensitivity analysis using AVSWAT or manually in case of text 

files based model. In first case, user should first activate "Sensitivity Analysis-

Autocalibration-Uncertainity" tools from tools menu. Then he has to select a specific 

scenario and simulation to analyses the sensitivity in it. After that, user should select 

if the sensitivity analysis will be for flow only, flow and sediment or flow, sediment 

and water quality. After defining the observed data file, user can click on start button 

to start sensitivity analysis. 

In the other case, text files based model, to apply sensitivity analysis in SWAT it is 

necessary to prepare some files. The first necessary files for sensitivity analysis is 

(Sensin.dat ), it specifies control variables of the LH-OAT. Second one is 

(changepar.dat ), it specifies model parameters included in the sensitivity analysis, the 

upper / lower bounds and its variation method. Third file contains the observed flow 

after replacing the empty periods. Furthermore, ICLB value should be changed in 

file.cio file into one. Sensitivity analysis results are written in details in (sensout.out ) 

and in summarized in (sensresult.out ). In these files the parameters are sorted 

according to its affect on objective function values and model output values.  

4.5.1 Sensitivity analysis results 

After preparing those files, sensitivity analysis output of Nzoia watershed displays 

that 10 parameters out of 27 parameters are more sensitive in controlling the flow.  

Figure 4-27 Sensitivity analysis options 
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The results of analysis displayed more clearly in Figure  4-30. In addition, a detailed 

description of sensitivity analysis results is listed in Table 4-8. 
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Table 4-8 Sensitivity analysis results 

Parameter Rank Description  

CN2 1 Initial SCS runoff curve number for moisture condition II. It is directly proportional to the surface runoff. 

ALPHA_BF 2 Base flow alpha factor (days). It is directly proportional to speed of land response to recharge 

rchrg_dp 3 Deep aquifer percolation fraction. It is directly proportional to lateral flow 

CH_K2 4 Channel effective hydraulic conductivity (mm/hr). It is directly proportional to the movement of water 

from the streambed to the subsurface 

surlag 5 Surface Runoff time lag (days) 

GWQMN 6 Threshold depth of water in the shallow aquifer required to start the return flow (mm H2O). It is inversely 

proportion to amount of base flow. 

sol_z 7 Depth from soil surface to bottom of layer (mm). 

canmx 8 Maximum canopy storage (mm H2O). 

ESCO 9 Soil Evaporation Compensation factor. It is inversely proportion to amount of evaporation. 

SOL_AWC 10 Available Water Capacity (mm H2O/mm soil) 

GW_REVAP 11 Groundwater "revap" coefficient. It inversely proportion to the amount of water transfer from shallow 

aquifer to root zone 

sol_k 12 Saturated hydraulic conductivity (mm/hr). 

GW_DELAY 13 Groundwater delay (days) 

SLOPE 14 Average slope steepness (m/m). 
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SLSUBBSN 15 Average slope length (m). 

epco 16 Plant uptake compensation factor. 

REVAPMN 17 Threshold depth of water in the shallow aquifer for "revap" or percolation to the deep aquifer (mm H2O). 

BIOMIX 18 Biological mixing efficiency 

ch_n 19 Channel Manning coefficient 

sol_alb 20 Moist soil albedo. 

SMFMX 28 Melt factor for snow on Jun 21 (mm/ºC/day) 

SMFMN 28 Melt factor for snow on December 21 (mm/ºC/day) 

TLAPS 28 Temperature laps rate (ºC/km) 

SFTMP 28 Snow Fall Temperature 

SMTMP 28 Snow melt base temperature (
o
C) 

TIMP 28 Snow Pack Temperature Lag factor 

blai 28 Leaf area index for crop 
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4.6 Auto-calibration 

Selecting the "Auto-calibration and Uncertainty" from tools menu in AVSWAT opens 

a new dialog. This dialog allows selecting the scenario and the simulation target of the 

application. After that a new window will open, (Figure 4-31), in this window SWAT 

gives users ability to selecting a method of updating the parameters values, it has three 

alternatives (replacement by value, adding to initial value or multiplying the initial 

value).  

In case of text files based model, ICLB value in (file.cio) file should changed to two. 

also, a new line should add to (fig.fig) file to define at which subcatchment's outlet we 

have the calibration observed flow, Figure  4-30shows this line, where (a45.aut) is file 

name for subcatchment 45 observed flows, it is important to replace all missing data 

in (a45.aut) with negative values. Furthermore, (Changepar) file should add, this file 

defines all parameters to be optimized, this file also contains these parameters 

max/min values, way of changing these parameters values within calibration process, 

Figure  4-31 is an example to this file.   

 

 

 

  

PARASOL tries to optimization Multi-objectives, so it calculates Global Optimization 

Criterion (GOC) In addition to objective function (see section 2.5.2 for more details). 

PARASOL writes GOC values in " sceparobj.out " file, 

 

calculates Nash-Sutcliffe when calibrate a model, using the following equation  

   

Figure 4-30define calibration data file in 

(fig.fig) file 

autocal       16   136     1     0 

          a45.aut 

Figure 4-29 example of "changepar.dat" file 
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Figure 4-31 Autocalibration options in SWAT 

 

 

Figure 4-33 Select parameters to be autocalibrated 

Figure 4-32 Select parameters updating methodand its 

boundaru values 
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5 Applications of model calibration techniques 

This chapter contains applications to the calibration techniques which described in 

chapter 2 (except the manual calibration method due to its extremely difficult in this 

case study) followed by analysis for its results. These calibration analyses utilized the 

modeling tools which described in chapter 3. 

Calibration period -after two years worming up- is 9 years from beginning of 1970 tell 

the end of 1979. Followed by five years for validation from beginning of 1980 tell the 

end of 1984.  

Nash-Sutcliffe model efficiency coefficient is used to assess the calibration power of 

applied model. This coefficient as described before in section 2.3, it ranges from -∞ to 

one, and as it increase it is better. 

 

Figure 5-1
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5.1 PARASOL 

PARASOL method as described in sections ( 2.5.2 and 4.6) was applied firstly to 

calibration model parameters because it is complemented in SWAT and almost all of 

its input files are ready after completing the model and sensitivity analysis. From the 

output files, model's global optimization criterion (GOC) enhanced with every model 

run, Figure 5-2displays that more clearly.  

Wide ranges of parameters boundaries were selected to calibrate the model initially, 

then parameters likelihoods to make good GOC were calculated and drawn in Figure 

5-3. These likelihoods used to modify the parameters boundaries which will help in 

making faster and more accurate calibration process. 
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Figure 5-2 Global optimization criterion  
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Figure 5-3 Parameters likelihood values 
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In previous figure, it contains of eight subfigures each one represent one of calibrated 

parameters. the horizontal axe is the parameters value and the virtical one is the 

liklihood value for each subrange (bin).  We can understand from that figure that, for 

six parameters (Rchrg_Dp, Canmx, Ch_K2, Surlag, Gwqmn and Sol_Awc ), it is 

beter to reduce the parameter boundaries and make it norrow. For the runoff curve 

number (cn2), it is better to make the lower boundary starts from (35 : 40). and may 

be 50 is good for the upper bound. Last parameter Alpha_Bf should rais the upper 

boundary and make it norrow. 

Detailed output for each optimization loop is found in "parasolout.out" file. Notice 

that PARASOL wrote "Lowest Nash-Sutcliff" but it means "Highest Nash-Sutcliff". 

Parameter values which corresponding to the optimum solution can be found in 

"bestpar.out" file.  

PARASOL applied two times for model calibration. First one it was searching in wide 

ranges of parameters, summary of this case results are in Table 5-1. The other case the 

searching ranges became narrower around the higher likelihood values, results of this 

case are presented in Figure 5-4 and summary of results is valid in Table 5-2 

Table 5-1PARASOL calibration results (ordinary parameters ranges) 

Parameter 
Lower 

bound 

Upper 

bound 

Best 

Value 

Notes 

Rchrg_Dp 0.00 1.00 0.311 

Canmx 0.00 10.00 0.135 

Ch_K2 0.00 150.00 24.11 

Surlag 0.00 10.00 0.58 

Cn2 35.00 98.00 35.13 

Gwqmn 0.00 5000.00 0.095 

Alpha_Bf 0.50 1.50 0.98 

Sol_Awc 0.00 0.50 0.266 

The model run 6356 times 

The highest Nash-Sutcliff  is 0.748 

Found the best at the trial 6147 
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Figure 5-4 Global optimization criterion improvement ( case two) 

 

Table 5-2PARASOL calibration results (modified parameters ranges) 

Parameter 
Lower 

bound 

pper 

Upper 

bound     

upper 

Best 

Value 

Notes 

Rchrg_Dp 0.00 0.50 0.23 

Canmx 0.00 1.00 0.06 

Ch_K2 0.00 50.00 15.25 

Surlag 0.00 1.00 0.45 

Cn2 25.00 50.00 25.30 

Gwqmn 0.00 1.0 0.11 

Alpha_Bf 0.00 1.50 1.46 

Sol_Awc 0.00 8.00 8.0 

The model run 3146 times 

The highest Nash-Sutcliff  is 

0.713 

Found the best at the trial 2854 
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5.2 ACCO 

Adaptive cluster covering (ACCO) was used in calibrating the case study model. It is 

working under GLOBE and linked with swat through some MATLAB codes, for 

more details please revise sections ( 2.5.3.1 and 3.3.2 ).  

Based on the ACCO output files (ACCOL.gen, ACCOL.rst and ACCOL.his). The 

calibration process by ACCO made 125 model runs in a total running time about one 

hour, at the end it found that best parameter compination that make Nash-Sutcliff 

value equals to 0.72.  

Figure 5-5displays the improvement in Nash-Sutcliff after removing the outlier values 

which came at the beginning of each searching loop. 
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Figure 5-5  Model goodness of fit improvement through searching process 

The optimum parameters values as estimated by ACCO in Table 5-3 

Table 5-3 Best parameters values using ACCO 

Parameter 
Lower 

bound 

pper 

Upper 

bound     

upper 

Best 

Value 

Notes 

Rchrg_Dp 0.00 0.50 0.24 

Canmx 0.00 1.00 0.23 

Ch_K2 0.00 50.00 38.24 

Surlag 0.00 1.00 0.73 

Cn2 25.00 50.00 41.00 

Gwqmn 0.00 1.0 0.64 

Alpha_Bf 0.00 1.50 1.41 

Sol_Awc 0.00 8.00 2.73 

The model run 125 times 

The highest Nash-Sutcliff  is 

0.714 
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5.3 ACCOL 

Adaptive cluster covering with local searches described before in 2.5.4. For GLOBE 

user he has to select "with local search (Powell-Brent)" option under "local search in 

ACCO". Analysis of output gen file gives Figure 5-6 that displays the development of 

model goodness of fit through searching process.  
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Figure 5-6 Model goodness of fit improvement through searching process 

The optimum parameters values as estimated by ACCOL in Table 5-4 

Table 5-4 Best parameters values using ACCOL 

Parameter 
Lower 

bound 

pper 

Upper 

bound     

upper 

Best 

Value 

Notes 

Rchrg_Dp 0.00 0.50 0.27 

Canmx 0.00 1.00 0.05 

Ch_K2 0.00 50.00 22.22 

Surlag 0.00 1.00 0.70 

Cn2 25.00 50.00 34.20 

Gwqmn 0.00 1.0 0.02 

Alpha_Bf 0.00 1.50 1.74 

Sol_Awc 0.00 8.00 0.24 

The model run 613 times 

The highest Nash-Sutcliff  is 

0.742 
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5.4 GA 

Genetic algorithm calibration was applied to calibrate this case study model, a brief 

explanation to theory of genetic algorithm optimization is found in 2.5.4. GLOBE was 

used to apply this algorithm; user can control the optimization process through 

number of characteristics (Figure 5-7). The population size and the maximum number 

of generations are two main characteristics of those.  

In order to know the effect of these two parameters on the goodness of fit, Nzoia 

model was optimized using three different values of these parameters. Table 5-5 

contains summary of these cases, also (Figure 5-9, Figure 5-10 and Figure 5-11) 

describes the rapidity of improving the goodness of model fit in three different cases. 

Figure 5-8 displays part of the "rsp' file that contains the calibration results. In Table 

5-5 a summary of the results. 

 

Figure 5-7 Genetic algorithm options in GLOBE
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Figure 5-8 GA outputs 

 

 Table 5-5 GA outputs with diffrent controlling parameters values 

 Case one Case two Case three 

Population size 10 50 60 

Maximum number of generations 20 100 100 

Best objective function value 0.723 0. 727 0.748 

Total number of function evaluations 180 1899 3835 
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Figure 5-9 Model goodness of fit improvement (case one) 
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Figure 5-10 Model goodness of fit improvement (case two) 
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Figure 5-11 Model goodness of fit improvement (case three) 
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5.5 M-Simplex 

Brief explanation to this algorithm can be found in section 2.5.6. M-simplex was 

applied using initial population size = 60, and 100 starts. Figure 5-12 displays M-

Simplex main widow in GLOBE. M-Simplex achieved 0.717 Nash-Sutcliff objective 

function's value after 1414 model runs. 

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 500 1000 1500
Model runs

N
a

s
h

-S
u

tc
li

ff
 v

a
lu

e

 

Figure 5-12 Model goodness of fit improvement (M-simplex)
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5.6 Comparison between different calibration techniques results 

In previous section, five alternatives calibration algorithms were applied in Nzoia 

watershed model. Some of them applied many times with different characteristics. 

Since PARASOL algorithm was applied first, it gave a guide about the boundary 

values of model sensitive parameters, so, these boundaries has been changed for 

calibration algorithms implemented in GLOBE.  

Table 5-6Summary results of calibration  algorithms 

Calibration algorithm Best Nash-Sutcliff Number of model runs 

PARASOL 0.748 6356 

GLUE (random sampling) 0.717 605 

GLUE (LHC sampling) 0.717 500 

ACCO 0.714 125 

ACCOL 0.732 613 

GA (fastest) 0.723 180 

GA (most accurate) 0.748 3835 

M-Simplex 0.717 1414 
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5.7 Model validation 

Model validation is an essential step in hydrological modeling; it aims to be sure that 

parameter values were estimated properly in calibration. In validation process the 

model out should be calculated using parameters values as estimated in calibration 

period and using observed inputs but it should be run in a time period not used in 

calibration, then we can compare model output with observed stream flow. 

Validation period in this case study is 5 years from beginning of 1980 tell the end of 

1984. PARASOL calibration gave good results so validation used its parameters 

estimation. For running validation, modeler should change ICLB value into 4 (see 

section 3.1.3). And define the selected validation period in "file.cio" file.  

After rerun the model with calibration results, it gave Nash-Sutcliff value for 

validation = 0.714, which is good. So the model considered as well calibrated. 
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6 Applications of model uncertainty analysis techniques 

In this section there is a description to four uncertainty analysis applications. The 

theoretical description for all used algorithms can be found in section 2.7.  

6.1 PARASOL 

PARASOL as mentioned before; it performs calibration and uncertainty analysis. It 

utilizes results of calibration results to study uncertainty analysis. Parasol divides the 

whole simulations done by SCE-UA calibration process into good solutions and not 

good solutions based on Bayesian method or χ2 method; User can select one of them 

by changing ISTAT value in "PARASOLIN.dat" file (1= χ2; 2=Bayesian), in this case 

ISTAT=1 that means the threshold here calculated by χ2 Statistical method. Also, 

"goodpar.out" file contains the parameter values that produce these good solutions.  

Now after successfully completed the calibration, the input for the uncertainty 

analysis are ready. User can read Detailed or only upper and lower uncertainty 

boundaries. For the detailed uncertainty analysis results user can check 

"ParaSolout.out" file. Otherwise user can check "minval.out" and "maxval.out" for the 

minimum and maximum discharge uncertainty boundaries. 

Improvement of objective function in the good simulations is presented in Figure 6-1. 
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Figure 6-1 objective function development for the good parameter sets 
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Figure 6-2 displays the upper and lower boundary limits of uncertainty analysis, and 

the observed flow. 

 

Figure 6-2 interval and observed flow (PARASOL) 

Uncertainty estimation based on this method says that 23.5% of observed data falls 

inside the prediction intervals, and the average width of prediction intervals is 

15.6m3/s. 

6.2 GLUE 

A MATLAB code was written to apply GLUE (described in section 2.7.6 ) to study 

uncertainty of Nzoia watershed. The following figure summarizes that code.  

Identify threshold and number of runs

Read parameters ranges

Randomly generate set of parameters 

Generate Modelin.exe

Change model input parameters

SWAT edit

Run Swat

Check model goodness of fit

( Nash-Sutcliffe)

> threshold Remove this trial 

Save behavioral

parameter and O.F. 
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Exit
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Figure 6-3Flowchart of MATLAB code to run GLUE 
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The uncertainty analysis of GLUE results indicates that 60.7% of observed flows fall 

inside the prediction intervals, and the average width of the prediction intervals is 50.8 

m3/s. 

 

Figure 6-4 Prediction interval and observed flow (GLUE) 

6.3 M-Simplex 

M-simplex makes 79.25% of observed data flows fall inside the prediction intervals, 

and the average width of the prediction intervals is 70.5 m3/s. 
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Figure 6-5 Prediction interval and observed flow (M-simplex) 
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6.4 UNEEC 

This method as describes in section 2.7.9 depends on on  the problem is to identify 

how many past flow values and past rainfalls it is reasonable to include to the model. 

AMI is a matlab code developed by (Shrestha, 2005), it computes and plots average 

mutual information (ami) and correlation of time series for different values of time 

lag. 

The result of AMI (Figure 6-6) shows that the highest correlation between model 

input and output is at no lag days. This means that it may be better to take into 

consideration the input data only one day back. Q= f (Rt,Rt-1, Rt-2, Qt,Qt-1, Qt-2,  

ETt,ETt-1, ETt-2,  ER, ERabs). After that, the total available observed flow and its 

corresponding simulated flow should be spitted into training and verification data sets. 
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Figure 6-6 Correlation between rainfall and model reseduals in different lag time 

After running UNEEC TOOL using Fuzzy c-mean clustering method with 6 clusters 

and weak classifiers M5 M5prime for analysis the uncertainty period of the data. 92% 

of observed data in training period and 94 in verification period were inside the 

prediction limits. Also the mean prediction intervals are 100 m3/s in training period 

and 88.66 m3/s in testing period. Furthermore UNEEC TOOL provides figures for 

prediction intervals and observed flow. These figures are presented in the following 

two figures.  
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Figure 6-7 Prediction interval and observed data in training period 
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Figure 6-8 Prediction interval and observed data in testing period 
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6.5 Conclusion 

By comparing results from different uncertainty analysis methods. And by knowing 

that the better uncertainty analysis the one which cover more observed data without 

making very wide prediction interval. 
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PARASOL 23.5 15.6 

GLUE 60.7 50 
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7 Conclusions and recommendations 

SWAT is an easy to use and accurate physically based distributed model. When it 

used under Arcview interface, user should take care when moving any project from 

machine to another one, he should be attention to put project files and data exactly in 

the same place, otherwise he will not be able to read or run the project. 

After creating a project with SWAT, it is easy to run sensitivity analysis, calibration 

and uncertainty analysis using (iSWAT), this application is explained in 3.3.1 without 

the Arcview interface. But, this software is able to edit SWAT input files but it failed 

to change Sol_Z values, therefore this parameters didn't calibrate in this study.  

When delineate watershed, flow gages positions should be at outlet of subcatchments. 

However autocalibration is fast, but with complex models which have a lot of 

parameters, it is really time consuming. so sensitivity analysis give big help, it 

reduced the parameters to be calibrated in this case study from 27 parameters to only 

8 parameters. 

The more widely parameters searching ranges, the more time needed for calibration, 

to reduce this range, a likelihood distribution of the parameters with the initially 

calibrated model, it helped a lot to minimize that range.  

Model parameters calibration using five different methods was applied in this study 

(PARASOL, ACCO, ACCOL, GA and M-Simplex). ACCO was the fastest one it was 

able to achieve good objective function value (not the best one compare to the other 

methods) in 125 times of model run. Also, it appeared that the difference in the final 

result is not so big, but the main affective factor is the time using to get the optimum 

parameter set. 

Matlab provides great ability to link modeling tool (SWAT) with a powerful 

optimization and uncertainty analysis tools like (GLOBE). The only comment is that 

MATLAB compiler needs very big space on hard disk to compile any project to be 

sure that it will work in machines that haven't Matlab installed on it. 

Searching surface near the optimum values seems flat. So after achieving reasonable 

objective function value, more searches will be waste of time, hence, modular should 

estimate reasonable number of model runs.  
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